崎頭言：デコミッションング技術に思う

総　説：欧米に於ける解体廃棄物再利用の状況
RANDEC

RANDECは、原子力施設のデコミッションング（廃止措置）技術の確立をめざして活動しています。

事業の内容

デコミッションングに関する試験研究・調査を行います。

デコミッションングに関する技術・情報を提供します。

デコミッションングに関する人材を養成します。

デコミッションングに関する普及啓発活動をします。
デコミッションング技報
第16号(1997年7月)

一目次一

巻頭言
デコミッションング技術に思う ... 1
大木 新彦

総説
欧米に於ける解体廃棄物再利用の状況 ... 2
松元 章

技術報告
原子炉廃止措置技術の開発状況
一部電機の廃止措置技術ー ... 11
白川 正広、高谷 純一、木越 清治、細田 博
宮塚 千昭、船口 進、伊藤 勝人

実用発電用原子炉廃炉設備確認試験
ー除染及び放射線計測技術についてー 28
石倉 武、小野澤 輝夫、最首 貞典

原子力施設における除染技術
ー壁面除染機の開発及び配管系統除染試験設備の紹介ー 37
藤田 恒昭、吉村 英夫
坂本 光二、原井 達也

水酸基ラジカルを利用した除染方法
ー基礎試験ー .. 45
秋山 孝夫、宮尾 英彦、古屋 廣高、鳥谷邦立、平野 真孝
大関 昇、梅津 浩、神永 達雄、増子 幸

コールド・クルーシプルによる解体金属の溶融技術について 58
鈴木 正啓
田中 等、池永 慶章
CONTENTS

Exposition

Current Status of Scrap Metal Recycling and Reuse in USA and European Countries ... 2

Akira MATSUMOTO

Technical Report

Research and Development Activities for Reactor Decommissioning

- Developing Technology of Fuji Electric Co., Ltd. ... 11
 Masahiro SHIRAKAWA, Jyunichi TAKAYA, Seiji MIZUKOSHI, Hiroshi HOSODA,
 Chiaki TOMIZUKA, Susumu FUNAGUCHI, Katsuhito ITO

Verification Tests on Decommissioning Technology for Commercial Nuclear Power

- Facilities Techniques on decontamination and radioactivity measurement — 28
 Takeshi ISHIKURA, Teruo ONOZAWA and Sadanori SAISUYU

Decontamination Technologies in Nuclear Facility

- Introduction of Wall Cleaners and System Decontamination Test Apparatus — 37
 Tsuneaki FUJITA, Hideo YOSHIMURA,
 Kohji SAKAGISHI and Tatsuya SAKURAI

Application of Hydro-oxyl-Radical Method for Decontamination

- Fundamental experiments — ... 45
 Takao AKIYAMA, Hidehiko MIYAO, Hirotaka FURUYA, Keiji TOYABE, Masataka HIRANO,
 Noboru OHZEKI, Hiroshi UMETSU, Tatsuo KAMINAGA and Tadashi MASHIKO

Promising Technology for the Melting of Dismantled Metal

by an Induction Cold Crucible ... 58

Masahiro SUZUKI

Tsutomu TANAKA, Yoshiaki IKENAGA

--- ii ---
Current Status of Scrap Metal Recycling and Reuse in USA and European Countries

Akira MATSUMOTO
J. RANDEC, No. 16 (June 1997), page 2~10, 5 Figures, 2 Tables

Recycling and reuse of natural resources has become a global issue to be pursued, but less effective without voluntary effort from the every industries and of the individuals.

In Japan, recycling and reuse of the scrap metal from dismantling of the nuclear facilities are currently noticed as a promising option and the responsible government organizations just started activities to develop the system for enabling and encouraging the nuclear facility owners to recycle their waste.

Coincidently, there have been many reports published recently, which inform successful results of the method and the activities of the international organizations for the same intention.

Taking this opportunity, current trends of scrap metal recycling and reuse in the experienced countries are reviewed and the proposals from JAEA, EC and OECD/NEA on the relating issues are summarized and compared in this paper.

Application of Hydro-oxyl-Radical Method for Decontamination

Fundamental experiments—
Takao AKIBAYASHI, Hidehiko MIYAO, Hirofumi FUKUYA, Keiji TOYABE, Masatake HIROTA, Noboru OHZUKI, Hiroshi UMETSU, Tatsuo KAMINAGA and Tadashi MASAKI
J. RANDEC, No. 16 (June 1997), page 45~57, 20 Figures, 2 Tables

Fundamental experiments were conducted for establishing the special decontamination technique using hydro-oxyl-radical method for radioactive contaminated solid wastes.

As results, it was confirmed that this method is applicable for system decontamination because the half life time of Ag (II) ion is comparatively long, and also it is able to re-use the recovered silver from the fowl solution after decontaminated.

This report describes the optimum conditions such as producing Ag(II) ion, concentration of nitric acid and silver, anode potential, electrolyte temperature, recovering the metallic Ag, etc.

This study is a part of the project of RANDEC under the sponsorship of the Science and Technology Agency of Japan.

Research and Development Activities for Reactor Decommissioning

Developing Technology of Fuji Electric Co., Ltd. —
Masahiro SHIBAKAWA, Jumpei YAMAZAKI, Shoji MIZUKOSHI, Hiroshi HOSOKA, Chiaki TOMIZUKA, Sumiya FUKUUCHI, Koshibito RO
J. RANDEC, No. 16 (June 1997), page 11~27, 13 Figures, 1 Table

Fuji Electric Co., Ltd. is conducting decommissioning R&D for commercial reactor, especially for gas cooled reactor since the construction of the Tokai-I power station of JAPCO, in the field of system engineering, residual radioactivity evaluation, dismantling of core internals, remote handling, treatment and disposal of radioactive waste, and radioactivity measurement. These R&D have been performed mainly under contract of JAPCO or JAERI.

This paper gives a summary of the present status and future plan concerning technical development for decommissioning of nuclear reactor by Fuji Electric Co., Ltd.

Promising Technology for the Melting of Dismantled Metal by an Induction Cold Crucible

Masahiro Suzuki
Tsutomu Tanaka, Yoshiaki Kenaga
J. RANDEC, No. 16 (June 1997), page 58~67, 5 Figures, 4 Tables

An induction cold crucible melting is one of the most promising technologies for the reuse of radioactively contaminated metals because it ensures a long life operation without generating secondary wastes under the high temperatures of metal melting.

A feasibility study on MERC (Melting and Recycling of Metals by Cold Crucible) process has been recently finished in RANDEC. In MERC, an induction cold crucible, which mainly consists of a melter, decontaminator and continuous caster is used for the melting and recycling of metals contaminated by low level radiation with small section generated from the nuclear facilities.

A cylindrical ingot of 3 kg and 45 mm in diameter was continuously cast by the MERC process through melting and solidifying simulated radioactive metallic tubes with the addition of flux composed of lime, alumina and silica. Neither splash of the melt nor increase in the temperature of the hook supporting tubes took place during releasing the tube onto the melt dome. The ingot surface was smooth and crack free, promising removal of radioactive elements contained in a slag stuck to the ingot surface. There was no macro segregation inside. Tracer elements of Sr and Hf remained in the slag, Cs and Zn in the dust. Co and Mn mostly remained in the ingot. However, up to 10% of Co could be transmitted to the slag.

Necessary data in the scheduled scale-up of MERC process was obtained through experiment as well as theoretical study. These results are transferred to the design and manufacturing of testing apparatus.

This work is a part of the project of RANDEC under the sponsorship of the Science and Technology Agency of Japan.
Verification Tests on Decommissioning Technology for Commercial Nuclear Power Facilities Techniques on decontamination and radioactivity measurement
Takeshi ISHIKURA, Teruo ONOZAWA and Sadanori SAISYU J. RANEC, No.16 (June 1997), page 28~36, 9 Figures, 1 Table

The Nuclear Power Engineering Corporation, NUPEC, has been implementing “The Verification Tests on Decommissioning Technology for Commercial Nuclear Power Facilities” since 1982, sponsored by the Ministry of International Trade and Industry. The object of the verification test is to improve decommissioning techniques for commercial nuclear power plants and to verify the safety and reliability. By FY 1994, the verification tests on cutting technique of reactor pressure vessel, dismantling technique of biological shield wall, and cutting technique of reactor internals had finished with successful result. Now, techniques on decontamination, radioactivity measurement etc. have been developing.

This paper describes overview of the development results on decontamination, radioactivity measurement and decommissioning waste processing system, following previous report.

Decontamination Technologies in Nuclear Facility
—Introduction of Wall Cleaners and System Decontamination Test Apparatus—

Tsuneki FUJITA, Hideo YOSHIMURA, Kohji SAKAGISHI and Tatsuya SAKURAI
J. RANEC, No.16 (June 1997), page 37~44, 6 Figures, 1 Table

ATOX Co., Ltd., offers nuclear facilities maintenance services, has been engaged in the development and improvement of decontamination techniques and equipment, for the safe and efficient operation, as well as reducing workers’ dose equivalent.

Wall cleaning system, for the reactor well and cavity in nuclear power plant, is an important part of our decontamination technologies. The first Roll-type Cleaning System developments were 1972, applications to nuclear power plant were many types, 45 systems from 1972 up to our days.

Recently, AC-type Cleaning System, introduced in almost all BWR plants in Japan, contributes to shortening the scheduled outage period and reducing workers’ dose equivalent due to the specific operation method. Overhang-type Cleaner, Handy-type Small Cleaner, and Looper-type Wall Cleaner (for narrow area on the wall) are development phase, but are expected to be widely applied to various wall shapes and conditions.

Furthermore, Chemical and Flowing Abrasive System Decontamination demonstration has been under way, using Test Loops with due regard to system decontamination at the time of nuclear facility decommissioning. The Test Loops consist of test section, circulating section, ion-exchanging section, etc., where chemicals temperature, flow rate, regeneration and other conditions can be controlled. Decontamination efficiency of various chemical process have been estimated using test pieces which are coating pipes and valves with oxide layer by hydrothermal synthesis.

This paper introduces those decontamination technologies developed by ATOX Co., Ltd.
デコミッションニング技術に思う

武蔵工業大学 教授
原子力研究所 所長
大木 新彦

わが国に於て、デコミッションニング技術の研究開発が注目され始めたのは、1982年原子力開発長期利用計画の中で、将来的の商業用発電炉の停止措置のために、日本原子力研究所以停止中の動力試験炉（JPD2K）を対象として、技術開発と解体実地試験を行う方針が明らかにされた頃と記憶している。その頃は国内での実績も少なく、研究施設の幾つかが大幅な改設計画のために、部分的に解体撤去した例はあったものの、本格的な総合解体撤去技術としては捉えられていなかった。

しかし、日本原子力研究所では、すでにスタートしていた原子炉解体技術開発計画の具体的プロジェクトを強力に推進し、その規模を実機に適応させるために、1986年よりJPDRの解体実地試験に取り掛かった。

当時、熱電力で電力関係（原子力、火力、送電）やプラント建設などのソフト計画部門の統括取り組みを行っていた関係で、今後の原子力技術開発の主体は放射性廃棄物処理・処分と総合的な解体撤去技術にあるということもあり、本開発計画には重点的に参画すべきとし、企業内会議に合計計画を提案したことを覚えている。一方、独自で行っていたデコミッションニング技術の内容分析調査を調べる内に、高い線量の物理を解体するのであるから、当然、効率良い切断技術、遠隔操作装置などの開発も重要であるが、これらは従来の既存技術の高度化で解決できるようだし、コンクリートの除去などが建設会社が得意な分野と思えるので、問題は解体作業よりも発生する放射性廃棄物の量と形態にあると思った。

さらに、発電所建設に劣らない巨大な施設を新設するため、可能なシステム・エンジニアリングとプロジェクト計画が重要な開発ポイントと考えた。そこで、当時日本原子力研究所でプロジェクトの統括をされていて動力試験炉の石川村長による、技術開発室の川崎・林次長、実務担当の横田光雄課長などの皆さんとお会した際に、「解体用機器開発についてはメーカーが力を入れるべきようになるでしょうが、問題はソフトとプロジェクトにあると思うので、充分研究され良かなるものを御覧頂きたい。ただし、商業炉の場合には費用が大きな要素となるので、研究開発として比較検討のため実施された部分は明確に区分をして頂く、JPDR解体手法が、即証認可のオールマイティな手法とならないようにお願いします。」と意気地なことを申し上げたところ、当然原研でも重点思考されていた問題であり、石川村長殿も同様のご意見であったことを思い出す。

JPDRの解体作業は1996年に無事完了され、多くの業績を残された。特に、解体プロジェクトのソフト・エンジニアリングとして、完成された「コスマード（COSMARD）」は世界的にも高く評価されている。この解体実地試験で得られた多量のデータは日本原子力研究所で整理され、今後の実際解体の参考に出来るよう管理されている。さらに、新しいエンジニアリングの観点から検討評価され、諸外国のデータと共に、普遍化し実用化を計って置ければ、さらに有効となるので、ぜひ、RANDECでの取締めを考えて頂きたいと思う。

デコミッションニングと言っても、技術としてすっかりと理解されないのは、解体と言う目的のために、解体技術要素を如何に組み合わせて行くかのシステム・エンジニアリングであり、工事・コスト管理などのプロジェクト・マネジメントに大分影響があるとの思い。それには、システム工学の編成で考えるので、解体事業の究極の目的は、安全性の確保はもとより、如何に最適化を得るかと言うことである。最適化を得るためには作業能率のアップ、人数数の削減、同時作業の可能性、解体物・廃棄物の大きさおよび減量、線量区分、物量などの技術情報、さらには、それらの費用などの多くの因子を含めた最適化（Optimize）設計まで行われなければならない。

その手法の確立のためには、国を含めた莫大なデータの入手可能なRANDECが、わが国の総合的解体撤去の主導的立場として活躍されることを大いに希望し期待するものである。
Recycling and reuse of natural resources has become a global issue to be pursued, but less effective without voluntary efforts from the every industries and of the individuals.

In Japan, recycling and reuse of the scrap metal from dismantling of the nuclear facilities are currently noticed as a promising option and the responsible government organizations just started activities to develop the system for enabling and encouraging the nuclear facility owners to recycle their waste.

Coincidently, there have been many reports published recently, which inform successful results of the method and the activities of the international organizations for the same intention.

Taking this opportunity, current trends of scrap metal recycling and reuse in the experienced countries are reviewed and the proposals from IAEA, EC and OECD/NEA on the relating issues are summarized and compared in this paper.

1. はじめに

地球上のあらゆる地域で発展つつあり、人口の急増が続く中で、資源の確保と環境負荷の低減のためには、資源の有効活用と廃棄物の再利用の必要性が、産業分野は無論のこと個人生活の領域にまで求められている。資源の有効利用は、現在の一時的利用の目的とイノセンティブから、地域・地球社会全体としての利益のため、個々の産業と個人の労を伴っても進まなければならない状況までに至っている。一般産業分野での、古紙回収、スクラップ金属再利用等の歴史は古いが、回収コストと一時的利用価値とのバランスから必ずしも順調ではないので、視点を変えた再利用の観点と制度が求められている。

原子力では、ウラン資源のリサイクルは当初から追求されてきたが、原子力施設の構成部品の再利用については、個々に特徴ある施設が多いために汎用品が少なく、品質管理を重視するためこれまでは関心の払われない分野であった。

余剰軍用原子力施設と経済性の悪い初期の原子力発電施設の解体が進むアメリカ、イギリスなど、また最新の安全基準を満足しない旧ソ連型原子力発電施設の解体に着手しているドイツ、フランスなどでは、金属材料等の再利用が現実的に模索されている。

原子力施設解体物の再利用では、まず放射能の汚染が注目される。原子炉解体物には、高い放射能汚染のももがあるが、その大部分、すなわち97%強は放射能汚染が全くないか、たとえあっただとしても再利用の支障にならない範囲のものとみなされている。

現在、解体プロジェクトを多く抱える諸国でも、どの範囲の放射能汚染までなら再利用を許容するか、または規制解除にするかは必ずしも統一的基準

財団法人原子力施設デコミッション研究協会（RANDEC）
によることなく、国毎のプロジェクトで検討されている。他方、IAEA, EC等の国際機関では、原子炉等解体物の再利用物が国際流通商品になることも想定し、国際的に共通な基準の制定を目論んでいる。

わが国では、さらに資源エネルギー庁・総合エネル\リギー調査会が「商業用原子力発電所の廃止措置に向けて」を公表し、解体廃棄物の課題につき、国は先進国の事例を国際機関の動向を踏まえつつ、非放射性廃棄物と放射性廃棄物を区分する制度を関係省庁の調整・連携の上で早急に整備すべきとした。

一方、原子炉設置者自ら実績を積み重ねることにより、国民の理解を得つつ廃棄物の有効利用を進めるべきとした。また、原子力安全委員会は、去る5月13日に、原子力発電所の廃止措置に伴って発生する解体物につき、環境への影響の恐れがなく、通常の産業廃棄物と同じように処分または再利用できる放射能汚染のレベルについて検討することを公表した。放射性廃棄物安全基準専門部会での審議を経て1年後をめどに結論が期待されている。

このような時期に、原子炉設置等解体廃棄物の再利用を巡る先進諸国の近況を概観してみる。

2. 解体物の再利用の実際、その近況

2.1 アメリカの状況

(1) DOEの動き－1

余剰軍用原子力施設の解体と関連の環境修復計画を進めているDOEは、各サイト内に何百万トンもの回収可能な解体資材を抱え、再利用推進の中心母胎となっている。

DOEは1995年に「リサイクル2000計画」を公表し、2000年までに環境修復計画で用いられる低レベル廃棄物処分容器の半分を汚染炭素鋼の再生品で販売した。しかし、再生容器が処女素材で出来た物より割高になる現実に直面し、計画は予定どおりに進展しなかった。そこで、DOEは単なる数値目標の設定に代えて、再利用を誘起する環境づくりに乗り出した。地域代表を含む関係機関で「公衆と作業者の安全確保、公開と信頼等の下でリサイクルを推進する」との基本原則を確認し、先ず污染炭素鋼（RCCS）を廃棄物用容器として使い捨てにすることを事例に、以下の具体的推進方策を進めている。

なお、RCCSへの着目は安価な炭素鋼に道が開ければ高価な金属の再利用は自ずから可能との判断によるものである。

関係者間の協力：①発生者のRCCS再生容器の活用努力、②処分サイト側の同容器受け入れ努力、③再利用・処分判断時の許認可上での指導

協力には、各発生者が容器発注・購入を共同化する等も含まれる。

最新な運行方法：オーエリッジの運営管理局をリーズナブルに選定し、素材RCCSと製品廃棄容器をDOEの各サイト間で流通、取引させ、メーカーと協力して市場の育成とコスト評価・低減の労務を担わせる。

その他再生利用：ステンレス鋼のガラス固化体収納容器への転用方法の追求

この政策の一環として、DOEは「M-100シリー\ズ」と称する標準サイズ再生容器の開発を終了しつつある。同容器はFig.1のような角形容器で、輸送規則とDOEの各処分サイトの受入基準に適い、既存の55ガロンドラム（わが国の200Lドラム缶相当）6個のオーバーパックに適し、かつ加工しやすい等の特徴があるとされる。

![Fig.1](image-url)
(2)DOEの動き－2

DOEは、金属の再利用を専門とするマニファクチャリングサイエンス社(MSC社)の協力を得て、ロッキーフラット環境技術サイト(RFETS)で原爆製造に使われていた4建家を丸ごと汚染金属の再利用施設に転用することを狙いとした「国家施設転用パイロット計画」(NCPP)を進めている。

この計画は、同施設に残存する金属溶融・加工設備がまだ労働可能なこと、及び旧施設の技術者の転職を促すことにつながっているものである。本計画は1994年4月からの①計画・評価、②除染と再生、③商用利用の3段階に分けて進められ、現在、4建家のうち2建家について第2段階までを終了し、その商用利用を始めるかどうかの段階にある。しかし、予想の制約で計画の半分の除染・再生が完了のままだ、規模での商用化が成立するかについては総合評価がなされている状況にある。これまでの作業で、経済価値のない機器は切断・スクラップ化の後貯蔵され、再利用に供される機器は洗浄されてきた。また、試験的にTRU廃棄物処理に予定される「WIPP」の受入れ基準に従うTRU廃棄物容器24個が作られている。(Fig.2,3) 2)

(3)MSC社の汚染金属スクラップ再生事業

米国で汚染金属の溶融等による蒸発・再利用のサービスは主にオークリッジのSEG社により供されたが、この度、MSC社が同じオークリッジで同種事業に乗り出すことになった。同社は、DOEは無機・有機の原核生産物から生ずる汚染金属を、必要に応じて所有権を引き受け、商業ベースで再利用に供するため、最新鋭の「汚染金属スクラップ再生工場(RSMRP)」の建設に1994年中の着手し、ほぼ完成に近づけているようである。この工場は、遠隔自動と補助的に使われる直接手動の荷受け・分類・区分・分け電源、化学的除塩ライン、ヒート担当(1回の溶解当り1,3万ボンド(3.9トン)容量の金属真空溶解ライン(小型の溶解炉2基も付設)、機械除塩のための検査ライン、並びに製造ラインから構成されている。

再利用の成否を左右する汚染物の処分費が20/ft²〜300/ft²と上昇傾向にある米国で、これが40/ft³(283/2001〜約3万円/2001)を越えれば商業ベースの再生事業が成り立つと同社は判断している。

MSC社は、5 R/hrまでの表面汚染スクラップを受け入れるとし、標準コストとしてTable1のような再利用コストを提示している。3)
Table 1

<table>
<thead>
<tr>
<th>Metal recycling services for specific configurations of waste</th>
<th>Budgetary Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5 mr/hr</td>
<td>$1.58/lb.</td>
</tr>
<tr>
<td>5 - 200 mr/hr</td>
<td>$1.68/lb.</td>
</tr>
<tr>
<td>200 - 300 mr/hr</td>
<td>$1.78/lb.</td>
</tr>
<tr>
<td>300 mr/hr - 5 r/hr</td>
<td>by quote</td>
</tr>
<tr>
<td>Structural steel > 1 inch thick</td>
<td>$0.89/lb.</td>
</tr>
<tr>
<td>Drum compaction for non-metals</td>
<td>$8.04/lb.</td>
</tr>
</tbody>
</table>

(4)民間炉の廃止措置に係わる再利用

米国での放射性汚染物の規制解処は、表面汚染0.83Bq/cm²以下を目標にし、プロジェクト毎に定められた表面汚染基準（体積汚染密度基準は）に沿ってなされている。米国では、商業発電炉の廃止措置計画は複数進行しているが、大型搭載の処分が可能ため、蒸気発生器や炉心部はそのままの形で処分されている。従って、解体に伴う廃棄物の発生量は少なくなるが、周辺機器、生体遮蔽体等を撤去に伴う廃棄物は多少発生している。既存の解体プロジェクトから出た廃棄物では、規制解処になった物量についての公表データは少ない。全面解体が終了したコロラド電力所有のフォートセントブレイン炉（電気出力33万kWの高熱ガス炉）と解体がほぼ終了したCinticrash炉（RI生産に供されていた熱出力5MWの炉、5基のホットセルを含む）で発生した放射性廃棄物については、それぞれ発生量の約50%（全発生量：8200m³、71KCI強）と約30%（全発生量：9345m³、4.2KCI）が後出の再生・減容の専門会社、SEG社に引き渡されている。

2.2 ドイツの状況

ドイツは、わが国と同じように商用炉について早期解体・サイトの更地化方針を持つ数少ない国の一つである。古くはオットーハーン号炉の解体、最近ではディーライヒパッハ炉の解体実施を踏まえて、初期のBWR型2基の炉、すなわちグンドレンゲン KRBA（電気出力25万kWの商用炉）と VAK（電気出力1.6万kWの試験炉）並びに旧東ドイツ地区のノルト発電所内の5基の炉（電気出力各40万kW級のVVER型）等の解体計画が着実に進展していっている。このうち、解体が炉心部に及びつつあるKRBAとVAKについて、解体物の再利用の実績が報告されている。

KRBAでは、1983年に汚染レベルが1000Bq/cm²以内であったタービンホールの解体に着手し、1990年以降表面汚染密度が50,000Bq/cm²とふる冷却系、1992年から炉内構造物・圧力容器・生体遮蔽体の解体を手掛けている。タービンホールと冷却系の解体でそれぞれ4500トンと700トン、合計5200トンの解体物が発生した。このうち60%が規制解処基準、汚染密度0.1Bq/g（表面汚染密度0.5Bq/cm²）を満たし、一般産業界に再利用された。汚染密度が0.1Bq/gを超え200Bq/g（後出ジンベルカンプ社の受け入れ上限値）以内で、全発生量の33%に及び金属類、主に配管、小型バルブ類及び複雑形状の機器が溶融後の限定再利用（遮蔽容器用材）に回され、残りの7%が最終処分対象として貯蔵される。

VAKでは、KRBAから発生した分を含めて電線ケーブルも規制解処対象となり、再利用に供された報告されている。ケーブルを細断し銅と絶縁体を分離することにより銅の100%と絶縁体の70%が規制解処対象になった。また、定型のコンクリートブロックは表面を約10mm程度特殊グラインダーで削り取った後、規制解処対象となった。

電気モーター類を構成する部品のアルミ・鋼・銅の各溶融まで加熱し、各成分の分離をはかる試みもなされている。

これまでの知見に基づき、解体物の処分、再利用を巡って、前者では固化処理・パッケージ・記録・輸送・最終処分のコスト、後者では除染・溶融・測定・再利用のコストを比較し、高汚染物の場合でも再利用コストは処分コストの70%、その他の場合は55%以下（Fig.4）で再利用の優位性を指摘している。

ドイツでは、欧州各国内で最も厳しい規制解処基準を堅持しているにも拘わらず、GNS社の解体分野が日本での最も多いジンベルカンプ社の溶融処理・再生化事業が商業規模で存在しているため、実行ベースのコスト比較が可能で再利用の実を挙げる要因になっている。
2.3 その他の欧州諸国の状況

UKAEAの旧核用施設と小規模研究施設、マグノックス・エレクトリック社の古いガス冷却型商用炉の長期安全貯蔵に向けた廃止措置対策が進むイギリスでは、EC提案の緩い規制案の導入を将来の課題とし、1993年の放射性物質法に定められた0.4Bq/gの規制解釈規制が実効的に適用され、汚染度がこれ以下の解体部材は産業廃棄物処分場にまわるか、スクラップ金属として金属加工業産業で再利用されている。炉体廃棄物の撤去が進むバーアイ・トロースフィニステ炉については、燃料交換機、ガス循環器、炭酸ガスタンク、ケーブル等のスクラップ利用が伝えられており。その拡がりは、この20年間に、それぞれの再利用基準を観察して理解されている。

3.2 再利用基準に関する国際機関の動向

本課題については、新しいもので文献があまり、特に14) 吉田らは放射線安全上の意味合い、歴史的経緯を含め各国の機関の活動を分かりやすく解説している。吉田らは国際機関としてのOECD/NEAの成果がその後に示すわけではない。また、骨子は既に吉田らが説明した内容に変わらない。これには、多くの重複を含むもの、吉田らの文言の中の国際機関の扱いと提言の特徴、並びに左近散見される主要国の反応を紹介する。
原子力安全条約の成立をリードしてきた。放射性廃棄物の管理についても安全基準「RADIWASS」の国際条約化計画を進めており、この一環として、国際的に整合のとれた規制基準の制定を図ってき
た。金属等規制基準された物質が国際間で流通する性が高くあ
した。この流れで既に原子力施設・資材の再利用を想定した安全実施細目が刊行されている。[20] 今回の提言は、再利用増や
は処分を問わず、無条件に規制解除にできる固体物質
中の放射性濃度を定めるもので、1991年以
来検討が加えられ、将来、規制中の国を国際機関との
合意が得られないと、公表後3年間各国の
コメントを求めることで、当面の技術資料として公
表されたものである。[20]

(2)ECの提言

EURATOM条約の下で、原子力安全・保障措置
等の分野で協調歩調を採るEC加盟国は、EC国で
でのスクラップ金属の流通量の増加傾向を踏まえ、
原子力施設の廃材についても規則の規制解除基準を
持つとの努力が1980年代後半からなされてきた。
既に、加盟国を拘束する安全基本原則「BSS」があ
り、これにより規制を抜けてても良い行為等を含
む安全規制のあり方が定められている。この原則の
下、1988年には EURATOM条約31条に据って、
専門家グループが原子力発電炉の構築スクラップ及
び機器の規制解除レベルを含む「原子力施設の解体
で生ずる廃棄物の再生及び放射線防護基準」を
勧告している。これにより、他国の提言と同様に10
μSv/y概念によるもので、この概念は、ニューダー
ライヒバッハ、カーペンハースト等欧州における主
要な解体プロジェクトを適用され、プロジェクトを
成功させる要因の一つであったとされる。

現在の動きは、金属材料の種類・発生施設の多様
化に対応し、かつその後の放射線防護の知見をふま
えて、1988年勧告を見直すとするものである。専門
家グループは、廃棄物の直接使用と同様の再利用
を想定し、前後の場合に施設の利用基準を、後者の
場合は加えて体積汚染密度基準を定めようとして
いる。既に、改訂の案は出来ているが、各国の合意
に基づく勧告になったとの情報にはまだ接していな

(3)OECD・NEAの提言

NEAは周知のように原子力施設の廃棄措置プロ
ジェクトを持つ各機関が参加したデコミッション
に関する技術情報交換協力計画を進めている。
NEAの提言は、これの計画の枠内で行われている
もので、プロジェクト推進グループの見解であり、
全2者の提言とは異質の側面がある。同提言文書[27]の
前書きでも、アプローチの方法が、ある面でIAEA
とECが進めているやり方と異なるが、この分野に
おける国際的共識に寄与するためOECD事務総
長の責任の下に刊行すると計られている。しかし同提
言は、廃棄措置の実務に携わっているグループの見
解だけに実効性のある中身に注目したい。NEAの
グループは、IAEA等の無条件規制解除基準の必要
としつつも、それだけが先行した場合は、今後の原
子力施設解体で活用されなければならない色々な条
件付きの再利用を阻害してしまうかと懸念している
。このような背景で、NEAは4階層の再利用条
件を想定し(Fig.5)、それぞれに特有の規制解除基
準を提唱している。補完資料では、多くの条件に
ついて評価されたとされているが公刊された資料では、
代表的条件に対する値しか示されていない。IAEA
が全核種を網羅できるように配慮している（表示され
ていない核種についても計算方法の提示がある）のと
対角的である。NEAの提言は、また、スクラップ
金属の「再利用」とそれを「処分し処分情報で補充」す
る場合を、一般廃棄物と社会経済的影響も含
めて比較し、前後の優位性を主張しながら幅広い再利
用の方法を訴えている。
3.2 各機関提言値の比較

Table 2 に示した機関の提示した放射性核種についての規制解除濃度を比較した。IAEA の値は、事故後に使用条件に関係なく他の機関の値と一致する「無条件規制解除値」であり、条件は NEA の階層 A-2 に相当する。溶融後ではあるが、その後の使用は無条件ということで、EC の値と NEA の階層 B-1 の値も相当値と考えていきだそう。NEA の階層 C は、酸素等への限定使用であるので、他とは性質が異なるが、参考までに示した。表示値が自明のように IAEA と NEA の提言値は数字の位置をかわすので、特に高濃度部分に差異は見ない。特徴的なのは NEA の値で、γ放射線核種に厳しく、放射線中性子に均等分散するウラン、プルトニウム等の α放射線核種に緩いのが特徴である。特にプルトニウム-239で階層 A-2 と階層 B-1 の数値が逆転しているのは、専用溶融施設でのスラグの取り扱いが内部被曝が利いているためであり、規制解除後の資材が再利用される場合は市場
Table 2

<table>
<thead>
<tr>
<th>核種（主なものの抜粋）</th>
<th>I A E A提言値 *1</th>
<th>EC提言値（スクラップ、再生） *2</th>
<th>NEA提言値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn-54</td>
<td>0.3 Bq/g</td>
<td>1 Bq/g</td>
<td>0.15 Bq/g</td>
</tr>
<tr>
<td>Co-60</td>
<td></td>
<td></td>
<td>0.7 Bq/g</td>
</tr>
<tr>
<td>Zn-65</td>
<td></td>
<td></td>
<td>30 Bq/g</td>
</tr>
<tr>
<td>Nb-94</td>
<td></td>
<td></td>
<td>0.2 Bq/g</td>
</tr>
<tr>
<td>Co-137</td>
<td></td>
<td></td>
<td>30 Bq/g</td>
</tr>
<tr>
<td>Eu-152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ac-227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-238</td>
<td>0.3 Bq/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd-237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-58</td>
<td>3 Bq/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sv-90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir-192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po-210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr-51</td>
<td>30 Bq/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce-144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pu-241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-14</td>
<td>300 Bq/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tc-99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-3</td>
<td>3,000 Bq/g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Np-63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pm-147</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 EC草案では1 Bq/g以下の値は0.2～1 Bq/gの間の値であるが、NEA報告[10]でこれらの値は1にまとめられると伝えられているので、丸めた数値を示している。

*2 原本に表示された全56核種からの抜粋

3.3 主要国の対応

現在公刊されているIAEA提言は、前述のように各国のコメントを求めめるための草案であり、1999年にはこれをRADWASSの関連指針にするかの議論が予想される。

わが国で着手された検討も、国内での放射性固体廃棄物の規制解除基準の実質的必要性に加えて、国際社会でどのような立場を採るべきかに及ぼされると考えられる。

NEAの報告書のとりまとめにDOEの環境修復計画の要職にあるW. M. Murphieが主導的役割を果たしたように、アメリカの政府機関は基準の制定に積極的なようである。しかし、アメリカの原子力産業には、放射性核種の一つ一つを管理するの
は、アメリカ国内で現実に使われている表面積率による区分法に比べ大幅なコスト増になると懸念する声も伝えられている。

欧州諸国では、既に数値を国内で活用しているイギリス、ドイツ等、積極的諸国が多いため、フランスの消極性が伝えられている。特にフランスの原子力規制担当庁（DISN）は、発生者責任や記録保存等、また政治的配慮も重視し、放射性廃棄物の一部を普遍的に規制解除するよりも、その持続性を踏まえた専用の処分施設を計画すべきとの考えが強いと伝えられる。最近でも、フランス電力庁（EDF）のEL-4炉の早期解体を促したDISNのEL-4布告で、TFAと称する稼働レベル以下の廃棄物を規定した他、関連してFC提案への疑問とフランスが別の取扱いをする可能性が伝えられている。\(^{189}\)

4. おわりに

紙面の都合で、再利用に関する技術については溶融技術以外に触れる機会を失った。ご関心のある方は、本誌の関連論文の他、文献\(^{189}\)にて技術の現状が検討されているのでご参照頂きたい。

“薄暗い紙はいやだ”と現在のわが国では古紙の再利用も難しいていると報じられている。原子力施設解体物の再利用では、国内で最も疑われる“放射能”のイメージも伴う。それでも資源の有効利用・地球環境の保全は必須の課題である。

再利用を促す規制解除または再利用基準が不可欠のことは論を待たない。その制定と活用のの水先を見据えて、原子力施設の立地地域住民はもとより、年齢の性格上広く国民の理解を得るという大きな課題が残っている。

この壁の先には、再利用製品の現実的活用を広げるという課題がある。再利用素材で出来た廃棄容器が処女素材で出来たものより高価になる必然性は大きい。容器詰めまでの責任しかいない者をふくめて、再利用の裏番に掛っていた利用の輪を広げなければならない。加えて、既に来国が挑戦しているように再利用製品の規格化・量産化等により再利用に係わるコストの低減も考えなければならず。場合によっては、原子力事業者に可能な限り再利用製品の使用を義務付ける規制さえ必要となるかもしれない。

今後予想されるどの過程にも平易な道のりはあり得ないが、進まざるを得ない方向へ着実に、一歩ずつ前進していきたいものである。

参考文献

1）The DOE’s Radioactively Contaminated Metal Recycling : RADWASTE, Jan. ‘97
2）Recycling Entire DOE Facilities : ibidem
3）Low Level Radioactive Scrap Metal Disposition : Frank Nichols et al., (MSC 社資料)
4）Decommissioning Progress : USA, T. LaGuardia, Doc. of int. conf. Feb. ‘97, London
5）Decommissioning of F.S.V., V.F.Liker, 平8年, デコメシンボ要旨集/RANDEC
6）Lessons Learned by Dismantling Two German BWRs, RADWASTE, Jan. ‘97
7）Issues Arising From the Clearance of Contaminated Sites : Dr. M. Harris 5th, Int. conf. " Decom. of Nuc. Facilities" Feb. ‘97, London
8）Decom.and Radioactive Waste Liability Management in Magnox Elect. D. Joynson, ibidem
9）BNFL 社資料
10）Decontamination and Melting of Low-Level Waste : D. W. Clements, RADWASTE, March ‘97
11）Melting and Recycling of Metallic Waste in France : C.Laffaille et al., ‘93 Seminar, Krefelt, 独
12）DISIN, D.Dellatre 次長講演、平成7年11月、原子力発電技術機構講演会
13）Recycling of Material from Nucl. Installations : K.Pfugrad et al., WM ‘96
14）クリアランスレベルを巡る国際的動向：吉田他、本誌第14号、‘96年8月
15）IAEAにおけるデコミション活動に関連して：下岡、本誌第8号、‘93年
17）Recycling and Reuse of Scrap Metals : OECD /NEA 単行本、‘96年秋
18）Nucleonics Week –P–9/10, March 20, ‘97,
Research and Development Activities for Reactor Decommissioning
- Developing Technology of Fuji Electric Co., Ltd. -

By Masahiro Shirakawa, Jyunichi TAKAYA, Seiji MIZUKOSHI, Hiroshi HOSODA, Chiaki TOMIZUKA, Susumu FUNAGUCHI, Katsuhito ITO

Fuji Electric Co., Ltd. is conducting decommissioning R&D for commercial reactor, especially for gas cooled reactor since the construction of the Tokai-1 power station of JAPCO, in the field of system engineering, residual radioactivity evaluation, dismantling of core internals, remote handling, treatment and disposal of radioactive waste, and radioactivity measurement. These R&D have been performed mainly under contract of JAPCO and JAERI.

This paper gives a summary of the present status and future plan concerning technical development for decommissioning of nuclear reactor by Fuji Electric Co., Ltd.

1. はじめに

我が国初の商業用原子力発電所である日本原子力発電株式会社の東海発電所が運転を開始してから30年が過ぎ、平成10年3月末に停止することが公表されている。平成9年1月の総合エネルギー調査会原子力部会報告書に指摘されているように、我が国においても商業用原子力発電所の廃止措置が現実のものとなる時代を迎えようとしている。

商業用廃止措置時には、計画から解体、廃棄物の処理、処分まで幅広い分野の技術が必要となる。また、廃止措置時には、一度に大量の低レベル放射性廃棄物等が発生するため、これらを合理的に処理、処分するための基準値、指針、技術基準値も早急に整備されつつある。

富士電機株式会社は、東海発電所の建設に参画して以来、各種の原子力施設および機器の設計、建設、保守を通じて得られた経験を基に、日本原子力発電㈱、日本原子力研究所等との関連からの委託研究や当社の社内研究により、原子力施設の廃止措置に係わる技術開発に取り組んできた。

今日時点では、特に、商業用原子力発電所の廃止
措置のために整備されつつある指針、技術基準の動向と整合性のとれた技術、さらに、実際の解体、廃棄物処理を合理的に行うために必要な技術等の観点から、開発を加速しつつある。それらの主要なもの以下に示したが、成果の概要を紹介する。
①システムエンジニアリング
 - エンジニアリング支援技術
 - 解体シミュレーション
②異存放射能評価技術
 - ガス炉用異存放射能解析コード
③鋼材切断技術
 - YAGレーザ切断技術
 - 二次生成物回収処理技術
④遠隔操作技術
 - 遠隔制御ロボットシステム
⑤廃棄物処理・処分技術
 - 金属溶融装置
 - 金属・黒鉛分別仕分装置
 - モルタル充填装置
⑥放射線管理技術
 - ドラム缶検査装置
 - 建屋残存放射能計測用全方向移動ロボット

2. 各技術開発の概要
2.1 システムエンジニアリング
平成9年の総合エネルギー調査会原子力部会報告書に述べられているように、原子力発電施設の廃止措置は、解体の方法や安全確保の方法を論じる段階を過ぎ、適切な技術を組み合っていかに合理的に実施するかというシステムエンジニアリングを論じる段階となりつつあることから、廃止措置の最適計画の作成、工数評価等を効率的に実施するシステムエンジニアリングの重要性が高まっている。
JPDR解体プロジェクトにおいては、廃止措置計画の作成や検討を行うためにエンジニアリングデータ計算コードシステム（COSMAR²）が開発され、同プロジェクトの実計画策定に適用して有効性が実証された。
大型発電炉への適用性に関しては日本原子力研究施設および日本原子力発電株式会社との共同研究を通じて開発に協力しており、大型発電炉のデータベースを提供して各種のエンジニアリングデータ（解体人工数、被曝量、廃棄物発生量、工事工程、工事費用等）を算出・評価する過程で必要な改良や機能の拡充が進まれている。
(1)エンジニアリング支援技術
廃止措置のシステムエンジニアリングの検討フロー概念を解体作業工程と関連技術との対応を含めて整理するとFig.1のように表すことができる。
廃止措置のシステムエンジニアリングは「解体対象物」からスタートすることから、検討作業、解体対象物の選定・評価→切断→解体→廃棄物処理→廃棄物処分の作業工程順に詳細を詰め込むことが合理的である。作業の作業および各作業の検討結果である作業工程などに対するフィードバックをかけて見直しを行う等により総合的に合理的な廃止措置計画が策定される。
大型発電炉の廃止措置計画の策定において、これらのエンジニアリングを合理的に実施するには、Fig.1に示されているように開発技術を含む種々の技術の性能条件や性能レベルによって設定される選択肢（例、除染性能＋二次廃棄物量＋処理・処分コストの相関）を適切に選定する必要があり、これらの選択肢それぞれをパラメータとしてエンジニアリングデータを評価したうえ、散布利用計画等のプラン固有の条件を加味して最適な廃止措置計画を組込むこととなる。同社ではこれらエンジニアリング作業を効率的に実施するため、大型発電炉の各作業へのエンジニアリングデータを評価できるデータベースを前記の共同研究を通じて構築している。
これにより物価データ解体方法・手順等の作業データ、作業環境データ、処理処分データ、3D・作図データ等の各種データベースを構築した。前者は廃棄物発生量、解体作業工数、被曝線量等の数値データを図形・グラフを、後者は3次元画像イメージの算出に活用される。これらのデータベースとエンジニアリングデータの入出力の関係をFig.2に示す。以下における構築した重要なデータベースの構成を紹介する。
Fig.1 Conceptual Engineering Flow Diagram of Decommissioning

Fig.2 Conceptual Diagram of Engineering System for Decommissioning
①物量データベース

JPDRの実施例でも明らかのように、解体工事はエリア（部屋）毎に工事準備→解体作業→廃棄物処理→片付けという手順で実施されることから、データベースはエリア単位で整理されていることが重要である。また、放射性物質による汚染については、一次冷却ガス系、使用済燃料冷却水系、廃液処理系等の系統毎に汚染の性状が異なることから系統単位で取り扱えることが必要である。

Table 1 に物量データベースの一例を示す。物量データベースは評価の対象となるプラントに存在する機器や構造物の名称、設置場所、系統、材質、数値、寸法、形状、重量、放射能、汚染面積、汚染濃度等を記述したデータの集まりであり、機器それぞれ対象付けられた写真や図面等の画像データを参照することも可能である。

②単順データベース

解体方法・手順データは、遠隔/手作業等の解体作業の方法、解体作業の手順、解体作業の作業性等の解体工事の構成や作業条件の設定に関連することともに、各データベースと解体作業との関連付けの主な要因となる。種々のバラメータについて廃止措置計画のケーススタディを行って廃止措置全体の合理化、最適化を検討する際は、これらのデータを各ケースに応じて入力・定義することにより、あらゆる廃止措置計画の評価が可能である。

なお、解体作業工数は、解体作業データの中に記述された作業工数等に関する数式や係数と物量データベースの中に記述されている重力や体積、面積等の数値を用いて計算する。

③解体シミュレーション

解体シミュレーションは、Fig.2 に示すように機器・建屋の寸法、形状、配置等の3次元作図データを入力として3次元画像イメージデータを表示することにより解体工事の進行をビジュアルに模擬する工事シミュレーションや遠隔解体装置の解体動作シミュレーションを行うことができる。このシステムにより解体手順や解体方法、物圏ルート等を臨場感のある画像イメージを見ながら検討することがができ、エンジニアリングの作業効率向上に効果が大きい。Photo 1 に3次元画像イメージの出力例を示す。

Table 1 Example of Plant Database

<table>
<thead>
<tr>
<th>ID</th>
<th>機器名称</th>
<th>部屋</th>
<th>部屋数</th>
<th>系統</th>
<th>種別</th>
<th>形状</th>
<th>材質</th>
<th>数量</th>
<th>重量 (kg)</th>
<th>外径 (mm)</th>
<th>長さ (mm)</th>
<th>汚染密度 (Bq/cm²)</th>
<th>放射能 (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3329</td>
<td>1次冷却材供出装置</td>
<td>4</td>
<td>3</td>
<td>351</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>2,150</td>
<td>650</td>
<td>2,270</td>
<td>12,000</td>
<td>1,000</td>
</tr>
<tr>
<td>3298</td>
<td>廃液配管</td>
<td>4</td>
<td>1</td>
<td>152</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>100</td>
<td>150</td>
<td>12,000</td>
<td>12,000</td>
<td>12,000</td>
</tr>
<tr>
<td>3369</td>
<td>真空ポンプ</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>3,200</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>3371</td>
<td>冷却材クーラー</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>3,600</td>
<td>600</td>
<td>3,700</td>
<td>3,700</td>
<td>3,700</td>
</tr>
<tr>
<td>3372</td>
<td>配管（4B以上）</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>3,400</td>
<td>216</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>3373</td>
<td>バルブ（4B以上）</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>190</td>
<td>216</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>3374</td>
<td>電線管</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>480</td>
<td>48</td>
<td>17,000</td>
<td>17,000</td>
<td>17,000</td>
</tr>
<tr>
<td>3375</td>
<td>計器スタンド</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>19</td>
<td>1</td>
<td>1</td>
<td>120</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>3376</td>
<td>ホイスト&レール</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>26</td>
<td>5</td>
<td>1</td>
<td>790</td>
<td>300</td>
<td>9,500</td>
<td>9,500</td>
<td>9,500</td>
</tr>
<tr>
<td>3377</td>
<td>ヘッドドリフト</td>
<td>4</td>
<td>2</td>
<td>265</td>
<td>8</td>
<td>26</td>
<td>5</td>
<td>1</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
</tbody>
</table>

注）全機器について写真や図面等のイメージデータを参照することが可能
2.2 残存放射能評価技術

廃止措置の全体計画を具体的に検討するために、プラント全体の残存放射能分布及び各系統、機器の放射能の評価が必要である。原子力施設解体の工法とコストは、解体により生成する放射化物の物量に大きく影響を受けるため、プラント停止後の残存放射能を精度よく評価することが重要である。

残存放射能の評価技術は、放射化放射能の評価と汚染放射能の評価より構成されるが、当社は特に放射化放射能精度向上に取り組んでいる。放射化残存放射能評価は、Fig.3に示す数値解析技術により行っている③。評価の中心となるのは、軽水炉等の分野で多くの放射能計算の実績のあるORIGENコード④である。これまで、廃止措置時の解体対象物の残存放射能評価精度に大きな影響を及ぼす可能性のある入力データの選定に重点を置いてきた検討に取り組んできた。すなわち、放射能計算の入力データとしては、中性子束レベル、中性子スペクトルによって決定される放射化面積、原子炉の運転条件、及び廃棄物処分上重要な長半減期の放射性核種を生成する親元素として微量元素がある。

Fig.3 Flow Diagram of Evaluation of Radioactivity

当社は、これまでの東海発電所の建設、保守・補修経験により蓄積した解体対象物の物量、形状及び材質等のプラントデータに加えて、これらの放射化
残存放射能の精度に影響する因子について、サンプリング分析、現地実態調査等を通じて、評価手法の改良及び実態把握に努めてきた。

中性子束の検討では、ガス炉の廃止措置に関して先行炉で実績のある英国との技術情報交換を図り、解析モデル化手法等の点で精度の向上に努めている。
ORIGENに用いる放射化断面積に関しては、廃止措置の対象としている東海発電所の生体遮蔽体内の各領域の中性子スペクトルを反映した断面積を作成するコードのシステム化を図っている。

また、放射化残存放射能の計算値の精度を検証するため、プラント内に照射用金属管等の設置、原子炉運転中の中性子束の実測、及び、放射化された実試料のサンプリング及び分析を行い、中性子束データ及び各核種毎の放射能を確認している。

これらの検討により、放射化残存放射能評価の精度向上を図り、原子力施設の合理的な廃止措置の全体計画の立案を可能になるとともに、実際の解体時においても工事の合理化が図れると考えている。

2.3 鋼材切断技術
1) YAGレーザ切断技術

原子力施設及び核燃料物質使用施設の解体に伴って発生する放射性の機器類（放射性廃棄物）は、粗切断の状態やそのままの状態で容器に収納すると充填効率が悪いため、処分容器数が過大となる。これらの放射性廃棄物を合理的に減容するためには、細断等により処理することが望ましい。しかし、表面継目状の高い機器類については直接、人手による切断できないため、遠隔操作による切断が必要となる。また、切断時に発生する切断粉塵、ドロス等の二次生成物が放射性廃棄物となることからその発生を極力抑える切断技術が必要となる。

機器類の細断法としては、ガス切断、プラズマ切断、レーザ切断及び機械的切断等が考えられるが、レーザ切断法に特有のYAGレーザによる切断法は上記の要求を解決することに加え、①光ファイバによるフレキシブルなパワー伝送が可能、②トーチ以外は非放射区域に設置可能なためメンテナンスが容易等の特色を有している。

当社では、特にYAGレーザ切断法に着目して原子力施設等で発生する汚染機器類の切断装置を開発してきた。その概要を以下に示す。

①切断装置
切断装置は、YAGレーザパワーサービスを光ファイバにより30m伝送して、ステンレス鋼製（SUS304）等の切断を行った。装置全体の基本構成図をFig.4に示す。加工用トーチ部は、Photo 2に示すように、6軸通用ロボットに保持されている。
切断時のアシストガスは、ステンレス中で水との酸化燃焼反応により高速切断が期待できる酸素と切断速度は劣るもののセリ内等の火災に対して安全性の高い窒素の2種類とした。

②切断の事例
a. ステンレス鋼板（酸素）
板厚4mm〜32mmまでのステンレス鋼板について、板厚に対する各切断限界速度の関係をまとめてFig.5に示す。これらのうち板厚25mmの試験片の切断面をPhoto 3に示す。同写真では、上方からレーザが照射されており、照射側3mm程度までは、きれいな切断面であるが、下部では面粗さがやや大きくなっている。また、切断面全体にわたって酸化された黒色になっている。切断ドロスの付着は見られない。
b. ステンレス鋼板（窒素）

板厚4mm〜15mmまでのステンレス鋼板について、板厚に対する各切断限界速度の関係をまとめてFig.6に示す。アシストガスが窒素の場合には、きれいな切断状態から突然切断できなくなる傾向が見られた。

これらのうち板厚15mmの場合の切断面を
Photo 4 に示す。酸素をアシストガスに用いた場合と異なり、切断面は酸化されず、加熱されたステンレス色及び黄色味を帯びた表面状態となっている。

Photo 4 Cross section of stainless-steel plate at 15mm. (assist gas N₂)

直線的に加工用トーチを移動させ切断できた。アシストガスには酸素を使用した。Photo 5 に示すとおり、きれいな切断面の状態が見られる。

Photo 5 Cross section of stainless-steel bar at φ 20mm. (assist gas O₂)

d. ステンレス鋼管

鋼管についても鋼棒と同様に、対象物の上方を直線的に加工用トーチを移動させ、切断性能を確認している。外径38mm、内径12mmの鋼管がこの方法で切断できた。アシストガスには酸素を使用した。

光ファイバ伝送に伴い、レーザ照射直後の側では、スポット径が10mm以上に広がるが、カーブ幅（切断幅）は、全体に2mm程度以下となっている。

切断面は Photo 6 に示すとおり、上部はきれいな断面状態が見られるが、中央部から下部までは粗さ及び剥離前のドロスが見られる。

以上から原子力施設等から発生するほとんどの汚染物質類は、本レーザ切断装置により切断処理可能であると考えられる。また、将来の原子力施設の廃止措置において、粗切断及び細断装置としての適用を検討中である。

c. ステンレス鋼棒

鋼棒については、対象物を回転させれば容易に切断できるが、回転できないような構造物に対する、切断性能を確認する目的で試験を行っている。直径20mmの鋼棒について、その上方を
対象として、各種の集じん技術を組合せて、①高集じん性能であること、②使用済フィルタ等の二次廃棄物量の低減、③従事者の被ばく低減に着目し、二次生成物回収処理の研究・試験を実施してきた。

装置は、Fig.7に示すように集じん要素としてのサイクロン、バグフィルタ、HEPAフィルタを順に組合せたシステムで構成される。集じん装置外観をPhoto 7に示す。原子炉解体時に発生する粉じん、ヒューム等の二次生成物を模擬した粉じんを使用し、総合的な集じん性能の測定及び使用済みフィルタ等の二次廃棄物物量の評価を行った。その結果、廃止措置への適用性を以下の特徴から確認できた。

①装置の総合集じん性能は、切断時に発生する鉄を主成分とする粉じん、ヒュームに対して、通過率が1/100以下となることが確認できた。
②大部分の粉じんがサイクロン及び逆洗機能のあるバグフィルタまでに捕集されるので、最終段のHEPAフィルタの負荷軽減が図れ、HEPAフィルタの長時間使用、交換頻度低減、すなわち、二次廃棄物物量を低減できる見通しが得られた。

今後、東海発電所廃止措置への適用へ向けた装置のユニット化、コンパクト化等の検討を行っていく計画である。

Fig.7 Flow Diagram of the Secondary Waste Recovery and Removal System
2.4 遠隔操作技術
原子炉圧力容器、炉内構造物に代表される高放射線環境下では、一般に作業員の接近作業が困難なため、遠隔操作による解体が不可欠である。国内外の廃止措置の実施例でも、高放射化部分ではロボット等を使用した遠隔操作による解体が行われている。
一例として、英国のWAGR（改良型ガス冷却炉）の遠隔解体の概念をFig.8に示す。同炉の炉内構造物の解体は、回転式床遮蔽、マスト、マニピュレータからなる解体システムを使用して行われる”。
当社ではこれまでに原子力分野をはじめ、様々な産業分野において遠隔制御技術を適用した各種機器の開発、製作を手がけており、廃止措置分野にも応用可能な技術を数多く有している。以下にその一例を示す。
Fig.9及びPhoto8は、原子炉内の各種構造物のシステム構成
検査作業を行うロボットシステムである。このシステムはパワーマニュピュレータ、監視用マニュピュレータの2台の電動多関節形マニュピュレータと検査機器、制御装置から構成される。パワーマニュピュレータは10自由度を有し、容易な運転操作によって、原子炉内の非常に狭い空間を障害となる構造物を回避しながら、対象位置へ自動的に到達できることを特徴としている。可搬重量は25kgで目的に応じて種々の検査機器を取り付けることが可能である。運転にはティーチングプレイバック方式を採用し、CRTまたはモックアップ装置で動作をティーチング、検証した後、原子炉内で動作を再現して運用する。

Photo 8 は、原子力発電所内に保管されている放射性廃棄物を貯蔵庫から取り出す装置である。本装置は作動ストローク7m、7自由度の油圧駆動遠隔操作マニュピュレータで、貯蔵庫に保管されている最大500kgの廃棄物を把持して取り出し、移動、配列を行う機能を有しており、高放射線雰囲気に適用可能であり、広範囲に分布する任意姿勢の重量物をハンドリングできることを特徴としている。

今後は、これまでの遠隔操作技術の経験を廃止措置に適用し、さらに、安全かつ確実に解体を行うシステムの開発に取り組んでいく所存である。

Photo 9 は、Radioactive Waste Handling Machine
2.5 廃棄物処理・処分技術
原子力発電所の廃棄物処理に伴い、多種、多様の解体廃棄物が短期間に、かつ、大量に発生する。
これらの解体廃棄物を処分場で埋設処分する場合や再利用を行う場合には、法制度を考慮して効率的かつ、合理的に発電所サイトにおける必要な処理を行うことが望まれている。
商業用原子力発電施設の廃棄物処理が现实のものとなるなか、本年1月の原子力部会報告6を受けて、高βγ低レベル放射性廃棄物の処理処分及びクリーンラベル法の設定等の解体廃棄物の処理処分に関連する法制度が整備されつつある。これらの動向から解体廃棄物は放射能特性、放射能レベル、材料、大きさ等に応じて分別、減容及び安定化等の処理を行った上で、処分又は再利用することが必要になると考えられる。
Fig.10 は GCR 炉の廃棄物に伴って発生する解体廃棄物の処理・処分の一例を示したものである。
このうち、当社では解体廃棄物の効率的、かつ合理的な処分、再利用技術として主に以下に示す廃棄物処理装置の開発を進めている。
*金属溶融装置
*金属・黒鉛分別仕分装置
*モルタル充填装置

(1)金属溶融装置
解体廃棄物のうち、低レベル放射性金属廃棄物の減容処理や極低レベルや放射性でない金属廃棄物を容器や遮蔽材等に再利用することに誘導だ溶融装置を用いて金属廃棄物を溶融処理することが考えられる。
Photo 10 に真空式誘導溶融装置の一例を示す。
また、Fig.11 にその真空排気系を示す。誘導溶融装置の特徴は、溶液能力が最大20トン/日と比較的大きいため短期間に大量に発生する解体金属廃棄物を溶融処理するのに適している。現在、これらの誘導溶融装置を用いた金属減容や金属再利用システムの廃棄物処理への適用性についての検討を進めていく。

Fig.10 Example of Solid Waste Stream from GCR Decommissioning
(2)金属・黒鉛分別仕分装置
解体廃棄物のうち、放射能レベルや核種組成の異なる部材は、合理的な輸送・処分のために分別仕分けすることが必要である。
当社で開発した放射性の金属と黒鉛破砕片の混在廃棄物を分別仕分ける装置をFig.12及びPhoto11に示す。この分別・仕分装置は、金属と黒鉛破砕片の物性と形状の違いに着目しスリットにより機械的に分別仕分けるものであり、コールド試験の結果では所定の分別性能が得られることを確認している。
今後は、実試料を用い、分別性能の確認を目指した検討を実施する計画である。
(3)モルタル充填装置
解体廃棄物のうち、大型機器については、細断せずにそのまま処分する方法や運転中の殻体廃棄物に用いられている200リットルドラム10より大型の容器に収納して処分する方法が考えられている。そ
Fig. 12 Configuration of Discrimination system between Graphite and Metal Components

Photo 11 A Unit of Separating System
の場合に機器や容器の内部へ注入して解体廃棄物を
一体化するための充填材として200リットルドラム
の場合と同様にモルタルを用いる方法が考えられている。
200リットルドラムに比べて大きな内容積を
有する大型容器や大型容器の内部にモルタルの流動
性を確保しながら充填するためには、高速な注入速
度でモルタルを充填する必要がある。当社では、現
在、Fig.13に示すようなユニット型の長距離圧送
が可能なモルタル混練・充填装置の開発を進めてい
る。

Fig.13 Mortar Mixing and Grouting Units

2.6 放射線管理技術
放射線管理技術のうち、廃止措置に関連の深いド
ラム缶測定技術及び残存放射能計測技術について紹
介する。
原子力施設の供用期間中に発生する低レベル放射
性廃棄物は、ドラム缶に詰めて管理区域内に貯蔵さ
れているが管理処分のために撤出する場合には所定
の検査が必要となる。
当社は、これまで、この作業の省力化や作業員の
被ばく低減のために、表面汚染密度、表面線量当量
率、1m線量当量率などの測定、判定を自動的に行
う検査装置を開発し納入してきた。
また、下北での低レベル放射性廃棄物の埋設のた
めには、上記の放射線情報の他にドラム缶内部の核
種と放射能濃度の情報が必要となるため、ドラム缶
内部の放射能濃度の測定を行う自動検査装置の開発
も進めている。ドラム缶内部の放射能測定は、
ドラム缶内の放射能が内部に大きく依存する。均一・均
質固化体を対象にしたドラム缶の測定装置はすでに
開発し、納入しており、現在固化体廃棄物を対象に
したドラム缶の測定装置の開発に取り組んでいる。
ドラム缶の検査は放射線以外の検査もあり、通常
はドラム缶の搬送設備と必要とされる検査装置との
組み合わせでシステムが構成される。
今後、廃止措置においても、運転中廃棄物の場合
とは異なる廃棄物を収納した大型容器の自動測定、
すなわち、表面汚染密度、表面線量当量率、容器内
部の放射能濃度の測定などの放射線測定技術が必要
になると考えられる。
(1)ドラム缶検査装置(放射能測定装置)
ドラム缶放射能測定装置は、コンクリート、アス
ファルトなどにより充填を行った均質固化体ドラム
缶の核種毎の放射能濃度を、Ge半導体検出器とプ
ラスチックシリンジレーション検出器を用いたグル
スガンマ法により、自動的に測定する装置である。
本装置の外観をPhoto 12に示す。

Photo 12 Activity Concentration Measuring
Assemblies in Radioactive Waste Drums
搬送設備により受け渡されたドラム缶は、移動台車により装置本体内に引き込まれ、移動台車上の回転台に乗せられ回転しながら測定されるものであり、Ge半導体検出器を上下に移動機構により上昇しながら測定を行い、またブラックスキャンシチューション検出器は縦に8本並べることにより、ドラム缶全体の測定が行われる。
また、台車にはボード装置が取付けられており、同時に重量の測定が行われる。
本装置はグロスガンマ法を用いることによって、簡単な装置構成で、比較的短時間の測定で良い精度が得られる等の特長を持つ。

グロスガンマ法は、ブラックスキャンシチューション検出器によるグロス計数率を補正物質ごと、密度、幾何学的検出効率などから荷重補正したもので、Ge半導体検出器によるピークリットエリアから得られる発生体中の核種別存在比率と、核種毎に求めた基準ガンマ線に対する検出効率比などから核種別放射能を算出し、その結果とドラム缶重量から、着目する核種毎の放射能濃度を算出する方式である。
測定対象となるドラム缶は、均一・均質固化体充填のJIS-Z1600相当200リットルドラム缶で、重量は1,000kg以下、表面線量率は10mSv/h以下、固化体のSr90に対して測定精度±30%以内、検出下限値は3.7×10⁻⁷Bq/g、正味処理時間は約5分間である。
均一・均質固化体ドラム缶放射能測定装置は既に移動しているが、選択固有物質ドラム缶対応の測定装置については、現在、密度分布、放射能分布に伴う誤差などの検討・評価に取り組んでいる。
(2)ドラム缶検査装置(スミヤ装置・表面線量率測定装置)
本装置は、表面汚染密度測定、表面線量当量率測定、1m線量当量測定並びに重量測定を自動で行うものである。本装置の外観をPhoto 13 に示す。

表面汚染密度測定は、ドラム缶表面に付着している放射性物質をスミヤろ布で拭き取り、その布を測定することで行う。スミヤろ布での拭き取りは、ドラム缶側面についてはドラム缶を回転させながらアームの先端に取り付けたろ布を上下に移動させることにより、また、ドラム缶上下面については回転軸中心から円周方向へろ布を移動させることにより行っている。試料取り後、アームは自動的に検出器の前面に移動し放射線の計測を行う。なお、試料取ったろ布は自動で交換できる。また、表面線量当量率測定については、スミヤろ布移動用のアームの先端に検出器を取り付けてスミヤと同時にほぼ全面の測定を可能としている。
本装置にドラム缶を装着してから搬出するまでの正味処理時間は約8分である。測定範囲は、①表面汚染密度：3.7×10⁻⁵〜3.7×10⁻⁳Bq/cm²、②表面線量当量率：1×10⁻³〜1×10⁻¹mSv/h、③1m線量当量率：1×10⁻³〜1×10⁻¹mSv/hである。
本装置は、200リットルドラム缶を対象としているものであるが、その測定技術は、原子力施設の廃止措置時に、多量に発生する疎な寸法の廃棄物容器の測定にも応用できるものである。
3．おわりに

以上述べたように、当社は関係各位の御指導、御協力を頂かざるをえず原子力施設の廃止措置に必要な技術分野について、技術開発並びに関連する試験を進めてきた。今後、商業用原子力発電所等の廃止措置が本格化するとともに、これらの技術がますます重要性を増していくものと考えられる。当社は、東海発電所をはじめとする商業用原子力発電所の廃止措置に関して計画から解体、廃棄物処理・処分までの廃止措置全体に関わる技術について、作業者の被ばく低減、作業効率の向上等の観点から安全で合理的な廃止措置をめざして、さらに技術開発に取り組んでいく考えである。

4．謝辞

最後になりましたが、ここに紹介した技術開発の多くは、日本原子力発電㈱及び、日本原子力研究所殿などの御指導、御協力のもとに実施しました。ここに、多くの方々に深く謝意を表します。

参考文献

1）総合エネルギー調査会原子力部会報告書、1997年1月
2）柳原敏、荻原博仁：原子炉デコミッションング管理のための計算コードシステムの開発、1－管理データ・プログラムの概要と取扱い説明、JAERI-M94-005、1994年2月
3）白川正彦他： “GCRプラント廃止措置現存放射能評価手法の開発”， 日本原子力学会秋の大会予稿集（1996）
4）A. G. Croff："A USER'S MANUAL FOR THE ORIGEN 2 COMPUTER CODE", ORNL/
実用発電用原子炉廃炉設備確認試験
—除染及放射線計測技術について—

石倉 武*、小野澤 輝夫*、最首 貞典*

Verification Tests on Decommissioning Technology for Commercial Nuclear Power Facilities Techniques on decontamination and radioactivity measurement

Takeshi Ishikura, Teruo Onozawa and Sadanori Saiyuu

The Nuclear Power Engineering Corporation, NUPEC, has been implementing “The Verification Tests on Decommissioning Technology for Commercial Nuclear Power Facilities” since 1982, sponsored by the Ministry of International Trade and Industry. The object of the verification test is to improve decommissioning techniques for commercial nuclear power plants and to verify the safety and reliability. By FY 1994, the verification tests on cutting technique of reactor pressure vessel, dismantling technique of biological shield wall, and cutting technique of reactor internals had finished with successful result. Now, techniques on decontamination, radioactivity measurement etc., have been developing.

This paper describes overview of the development results on decontamination, radioactivity measurement and decommissioning waste processing system, following previous report1).

1. はじめに

原子力機構では通産省の委託を受けて、「実用発電用原子炉廃炉設備確認試験」を昭和57年度から実施している。この確認試験は、廃用原子力発電所の廃止措置に必要な技術の一層の向上を図り、安全性と信頼性を確証することを目的とし、作業者線量当量の低減、廃棄物量の低減、及び作業の効率化を目指すものである。この試験の特徴は、材料、形状、対象物等に関し商用炉を模擬した条件下で各技術・工法を試験し、性能を確認することである。これまでに原子力圧力容器切断技術、堆体遮蔽壁表面剥離技術、炉内構造物切断技術については、その切断、解体の目標を達成し、平成6年度までに確認を終了している。現在は、解体前及び解体後の除染技術、建屋及び廃棄物に対する放射線計測技術等の確認試験を行っている(Table 1)。

本稿では、既報1)の「解体技術」に引き続き、これまでに実施してきた確認試験のうち、「除染及び放射線計測」について平成8年度までの成果の概要を紹介する。2章で除染技術、3章で放射線計測技術、4章で除染と計測の一部を組合せた解体廃棄物処理システム技術を概説する。

* 財団法人 原子力発電技術機構 プラント機器部(Nuclear Power Engineering Corporation)
2．除染技術

除染は非汚染部分と汚染部分を分離する行為であり、廃止措置における主要な作業の一つである。廃止措置の除染は解体と関連から次のように分類することができる。

－解体前除染
－解体中除染
－解体後除染

解体前除染は解体作業時の作業雰囲気線量当量率をあらかじめ下げることが主な目的であり、配管系統を除染する系統除染、大型容器等を除染する除染液で除染する機器除染等がある。

解体中除染は機器解除後の建屋解体前にその後の建屋解体作業を容易に行うことが主な目的であり、建屋の汚染部分を除染するコンクリート表面剝離除染等がある。

解体後除染は解体後の建屋解体後にその後の建屋解体作業を容易に行うことが主な目的であり、建屋の汚染部分を除染するコンクリート表面剝離除染等がある。

以下に原子力機構で取り組んでいる確証試験の解体前除染及び解体後除染について述べる。

2.1 解体前除染

(1) 系統除染

作業雰囲気の線量当量率を下げるための除染技術は長年にわたり、既に供用中除染に適用されている例も数多い。しかし、廃止措置の除染としては廃棄物の適用例もまだ少ない。廃止措置の系統除染の特徴は供用中除染のように対象材料の母材に損傷を与えてはならない、という制約がない点である。

本確証試験では、除染係数(DF)の目標をこれまでの水準より一段と進める観点から目標DF100とし、二次廃棄物が少なく、操作性も良好な除染剤の開発を目指している。まず、各系統除染剤として希薄液系のゲート、ゲート有機酸、LOMI(LOM、CORD、また、濃厚液系の有機酸(シュウ酸等)、無機酸(塩酸等)を選定し、検証皮膜によるコールド試験及び実機プラント異常によるホット試験を行った。その結果、これらの希薄液除染剤は過マンガン酸処理を行ってもDF100を達成できないこと、また、濃厚液ではDF100を達成するが、二次廃棄物量が希薄液の数倍になることが判った。このため、①希薄液の除染性向上、②濃厚液の二次廃棄物低減の観点から除染剤の改良に取組んだ。結果として、PWRの一次系ステンレス鋼の酸化皮膜に対しては、シュウ酸(0.1%)とシュウ酸バナジウム(0.16%)による温度95℃での循環法(NP処理)でDFなどの目標が達成できた。しかし、このシュウ酸系の除染剤は炭素鋼を共存する系統ではシュウ酸酸の析出があるため、炭素鋼を共存するBERの循環法に対しては、塩酸の濃度を下げて(0.1%)、還元剤の塩化バナジウム(0.16%)と炭素鋼の溶出を抑制するインフロックを添加した塩酸還元剤希薄による95℃での循環法(NP処理)又は循環法で塩化バナジウム(0.15%)、還元剤の塩酸還元剤希薄(0.16%)、還元剤の塩酸還元剤希薄(0.15%)とレアースコルビン酸を塩酸還元剤希薄による60℃でのフィル・アンド・フレン法の適用性が良いことが判った。Fig.1はシュウ酸還元剤希薄と塩酸還元剤希薄の各除染剤により、皮膜が完全に溶解するまでの試料酸化皮膜の減少を示した。

また、既存除染剤の改良としてCORD法の炭素鋼と共存系への適用やゼリウム4価による長配管への適用などについても現在試験中である。
Fig.1 Weight Reduction of Oxide Film on Specimens due to the Typical Decontamination Agents

(2) 大型機器除染

大型熱交換器の胴部や蒸液貯蔵タンクなどの大型機器は、汚染溶液に比べ発熱が大きく、機器内部の除染液を通過する場合、その後の除染液が大量に発生する。これを避けるため、スプレー法、ゲル法など少ない量での除染に適する除染剤、除染条件を検討した。

スプレー法ではタンク内の構造物や内壁に対し、塩酸還元剤系濃厚除染剤及び有機酸系濃厚除染剤が鉄系酸化物を充分溶解できることを確認した。また、ゲル法では塩酸還元剤系濃厚除染剤が充分な溶解力があることを確認した。ゲル法はスプレー法に比べゲル剤（水ガラス及び硫酸）自身の処理を要するためには不利である。现在、ホット試験片による両法の除染効果試験を実施中である。

2.2 解体後除染

金属部材の表層部に浸透する微量の汚染まで除去するには、あらかじめ酸化皮膜や塩層を除去した後、金属部材表面を徹底除染し、その後洗浄することが有効な方法である。本確認試験では、皮膜等の除去用としてウェットブラスト法及びドライアイスブラスト法を、また、母材表面の溶解用として電解除染法と強化学除染法を、さらに付着汚染物の除去用として超音波洗浄法を改良、開発した。

(1) ブラスト除染

ブラスト除染では、ブラスト材の媒体に水を用い

るウェットブラスト法と空気を用いるドライアイスブラスト法について試験した。ウェットブラスト法については各種のブラスト材の中からアルミナ、ジルコニアなどを選定し、圧力などの適用条件を検討し、さらに、実機ホットサンプルを用いて試験した。この結果、アルミナは研削性能に優れているが、耐久性ではジルコニアビーズが優れていることを確認した（Fig.2）。また、二次飛散物が少ないドライアイスは、塩酸除去に有効であるが、硬い酸化皮膜の研削には適していないことを確認した。さらに、ジルコニアビーズを用いて試験を継続し、皮膜や塩層の除去、金属部材表面の平滑な研削に有効であることを確認した。

Fig.2 Removal Rate of Material due to Blasting Media (Zirconia and Alumina)

(2) 電解除染

電解除染は、一般工事等で金属表面処理に使われている技術であり、除染技術としても長年の実在がある。この技術を素材の形や環境のような単純形状用の除染法として性能を確認した。まず、電解液として硫酸と中性塩（硫化ナトリウム）を用いて試験した結果、溶解性能に優れた硫酸を選定した。次に、金属部材の溶解速度に影響を与える流速密度、電極間距離、電解液濃度、温度について試験し、基本条件を決定した（0.3A/m²、60°C）。実機試作を用いたホット試験では、目標値のDF10%以上の値が得られた。DF10%を得るための金属母線の平均溶解厚みは、炭

--- 30 ---
素鋼で150μm、ステンレス鋼で7μmであった。

電解法は通常、除染対象金属を陽極にして表面汚染を溶出させる接触式が一般的な方法であるが、対象金属を陽極に接触させず、分極させて溶出させる非接触法についての性能も確認した。この方法は電気的な効率は構造の影響で20～50％ロスするが、対象金属と陽極を接続する操作が不要となり、遠隔自動で取扱い操作が简易であり、大量の除染対象には実用可能な除染法であることを確認した（Fig.3）。

![Fig.3 Dissolution Rate of Material due to Noncontact Type Electrolytic Decontamination](image)

（3）強力化学除染

小口径配管、弁、ポンプ等の比較的複雑な形状を持つ装置に対しては、電解除染は不向きなため、セリウム4価の強力な酸化力を有する塩酸式除染法の適用性を確認した。まず、硫酸セリウムと硝酸セリウムについて溶解力を各種条件で比較した結果、溶解力の優れた硝酸セリウムを選定し、Ce⁴⁺0.4 mol・dm⁻³、ステンレス鋼には80℃、炭素鋼には50℃を除染条件として選定した。電解除染と同様、実機実験を用いたホット試験で目標値のDF10⁴以上が得られた。対象金属の配管長さ、充填率などの溶解速度に与える影響を実施計装で試験し、特に問題ないことを確認した（Fig.4）。

なお、化学除染は除染液が接触する表面をすべて除染できる有効な除染法であるが、通常の汚染物は配管内面など材料の一部だけが汚染されているので、浸没した時に汚染物の材料も同時に溶解してしまいます。このため二次生成物の低減の観点から、単純形状物にたいしては電解法を適用し、複雑形状物に対してのみ強力化学除染を適用している。

![Fig.4 Dissolution Rate of Material due to the Ce⁴⁺ Type Decontamination](image)

（4）超音波洗浄

上述の電解除染あるいは強力化学除染後に残留する付着物、除染液等を効率的に除去、洗浄するプロセスを検討した。除染後の廃棄物を0.8m³の洗浄槽に入れ、槽内の壁面に7台の超音波振動子（総出力1,8kW）を設置することにより、1パック当たり5分間の洗浄数回で洗浄にできることを確認した。また、この装置には対象廃棄物を汚染から完全に分離
するため、超音波洗浄後に、シャワー、エアプロンを行う。付着水による微量汚染を払拭除去するプロセスを有している。

3. 放射線計測技術

廃棄する施設の放射性物質の状況や生成する廃棄物の放射性物質濃度を正確に把握することは、廃棄物処理における最も基本的な作業である。廃棄物処理の主要な放射線計測として原子力機関が取り組んでいる解体前放射線計測、建築放射線計測、解体廃棄物放射線計測について以下に概説する。

3.1 解体前放射線計測

(1) 線量当量率測定

運用停止後、配管や機器の表面線量当量率測定には比較的高い線量当量率環境での作業に被ばくが予想される。特に解体前計測では、解体時に作業環境の線量当量率を把握し、除染時間や除染効果を確認するための測定作業が必要となる。このような高線量当量率下での測定作業時間を減らす観点から、シリンコン半導体検出器と光伝達方式を組み合わせた小型検出装置の設置型検出装置及びCT分野の像再構成アルゴリズムの一種である特許を応用した、少ない測定点での計測手法を提案したシステムを開発している。

これまでの成果としては、経済な設置型検出器（重量0.5kg程度、外径10×30×20cm）をBWRの代表的な配管群（再循環系7本）を模擬した条件下において22点の測定で計測した結果、放射性物質濃度が極端に変化する場合を除き、線量当量率及びDFを誤差10%程度以下で評価できることが確認した。また、配管中修および、大型タンク、熱交換器等への適用性について確認している。

(2) 放射性物質検出器

廃棄物処理の全体計画や解体前除染評価には、停止後の配管や機器内部の放射性物質検出器の把握が欠かせない。既に配管内部の核種測定用に一部の発電所で使用されているゲルマニウム(Ge)検出器による方法の応用として、当確認試験では、2台の電気式Ge検出器を用い、直接線と散乱線の比から内面付着の放射性物質濃度を精度よく測定評価するための試験を行っている。これまでの結果では検出器を配管の対向位置に2台設置すれば、付着及び残留液の放射性物質濃度を小さい誤差で測定評価でき、適用性があることを確認した。

3.2 建築放射線計測

廃棄物処理の標準工程では、機器や構造物を撤去後、建築の放射線管理区域を設定してから建築の解体を行うことになっている。この管理区域の解体除は建築の表面等に残存する放射性物質濃度が固定値以下であることを確認する必要がある。このため、本確認試験では建築の床、壁、天井のような面積の放射性物質濃度を半自動的に測定評価する技術として、広域分布測定、汚染浸透測定、及び汚染箇所除去後の最終確認測定の各技術を開発中である。また、周辺無放生物学的物質が残存しないことを確認することもこの試験の対象に含めて検討している。

本確認試験では、IAEAのクリアランスレベルにおける処理程度の値が、わが国のクリアランスレベルとして設定されると想定して目標値を定め、開発を進めている。

(1) 広域分布測定

110万kW級電気所の原子炉建設の床、壁、天井は面積が約10万m²と推定されるが、これを標準工程では建築体解体面に測定する場合、10ヶ月程度で行う必要がある。また、このクリアランスレベルを考慮し、装置の目標値を評価単位1×1mで検出下限1kBq/m²、処理能力100m²/日以上とした。検出方法は、床や壁面にプラステックシンチレーション検出器により密閉走査測定方法を、また、高圧水の塗装作業が不可欠なところには減速位置からの一括分布測定方法を開発している。

密閉走査測定では1回が30〜100cmの矩形のプラステックシンチレーション検出器を用いて目標値を達成できることを確認した(Fig.5)。また、一括分布測定方法ではγ線カメラ形式のNaI検出器を用いた二次元分布測定により、1×1m単位での分布特性が得られるものと確認した。しかし、レンズ構造のビームホールがγ線入力を遮ることなどから、検出下限を達成するには25m²/日程度とやや長時間を要するので、更なる改善が必要である。

検出器を測定後に正確に位置決めするための測定機構、高圧水検出器を確実に接続するための昇降機構、及び凹凸床面などに影響されない走行をする
ポーリング方式は孔中央Csi検出器をラッピングシンチレーション検波器を用い、その計数率変化から線源位置を特定するものである。コンクリート内部で比較的深い位置の0.1Bq/g以下の汚染浸透がある場合の測定には、非破壊方式より適しており、コンクリート内部に重層した線源が1.5cm以上離れていれば識別できることを確認した。

(3) 確認測定

建屋コンクリートの最終確認用測定には核種別評価が可能なGe検出器を中心にした測定装置を検討している。土壌用にはGe検出器に大型プラスチックシンチレーション検波器を組合わせた走査型測定方式を、建屋用には広域分布測定の直向走査方式及びGe検出器を長時間測定および固定測定の一括測定方式を開発している。また、洞の中や狭小部屋には、プラスチックシンチレーションファイバーを用いた装置型測定方式を開発している。建屋用の目標性能は広域分布測定と同じ値とした。

走査型測定方式について、土壌に対する検出器の応答を確認した結果、5×5m程度で天然放射性物質濃度が変わる場所が4分の1以下の場合、プラスチックシンチレーション検波器による10秒間の測定で目標値の1kBq/m²、200m²/日で達成できることを確認した。但し、Ge検出器の詳細測定は250秒程度の長い測定時間が必要であるため、Ge検出器は汚染の可能性のある所を中心に測定するなどの運用も考えられる。

Ge検出器による一括測定方式では、5×5 m (面積150m²) の大きさの部屋を想定して評価した結果、目標検出下限値を1×1 m 単位では100時間、5×5 m 単位では0.5時間で達成できることを確認した。

プラスチックシンチレーションファイバーを用いた装置型の一括測定方式では、7本のバンドルファイバーレー目標検出下限を約25時間で測定の9m²/日（相当）で測定が可能になった。測定時間はバンドル数の増加によりさらに短縮可能であり、今後確認する予定である。

3.3 解体廃棄物放射線計測

解体に伴い大量に発生する廃棄物に対して、その放射性物質の濃度レベルに応じて放射性廃棄物と放射線廃棄物として扱う必要がある廃棄物とを識別区分

Fig.5 Detection Limit of 21×21cm Detector for Scanning Measurement Method
し、効果的に除染することが必要である。このため、想定されるクリアランスレベル近傍の汚染濃度を精度よく測定する極低レベル測定技術、及び金属廃棄物の汚染分布を把握する汚染分布識別技術の開発を行った。

(1) 極低レベル測定技術
放射性廃棄物全量(110万 kJ 輕水炉で2〜4万トン/プランクト)を原子炉の解体期間(28ヶ月)で処理できる程度の容量として10t/h、クリアランスレベルを精度よく測定できる値として、0.04Bq/g を目標値として設定した。測定装置はプラスクチンチレーション検出器と Ge 検出器を収容した 2 組の筐体と、その間に NaI 検出器群を配置することにより、不均一分布で核種構成が不明な極低レベルの放射性廃棄物に対応できるように設計した(Fig.6)。

![Fig.6 Accuracy of the Very Low Level Radioactivity Measurement Apparatus (PLS Detector)](image)

容量を10t/h としたことから、1 回当たり1 m程度の対象を5分程度で測定できることを装置の設計要件とした。対象廃棄物を台車に乗せ、検出器筐体間(間隔70cm以下)をステップ状に進行させる。検出器筐体と対象物の線源が離れている場合、線源の自己吸収や線源からの距離の影響で誤差が大きくなる。これを補正するために、1)散乱線/直接線比から廃棄物自身の自己吸収を補正し、2)偏在する線源に対しては NaI 検出器群からの位置情報を補正し、また、3)核種構成は Ge 検出器で確認することとした。対象廃棄物を単純形状と複雑形状、粗亜微細粒子と密充填、均一と不均一など様々な条件で試験した結果、プラスクチンチレーション2台(各12,000cc)、Ge 検出器4台(各70cc)に補助的な NaI 検出器(1台)を設置することで0.5〜1 m程度の大きさの各種廃棄物に対し、上述の目標値が得られることを確認した。

(2) 汚染分布識別技術
汚染分布識別装置は金属廃棄物の汚染分布を把握し、効率的に除染するための装置である。測定対象は放射線レベルが比較的高い汚染金属廃棄物であることから、対象物量を限定し、目標値を容量 2 t/h、検出下限 0.4Bq/g と設定した。線源の情報を受入れ易くするため、前方にコリメーションのない NaI 検出器とし、測定対象の上下左右 4 方向から12台ずつ計48台を配置した。対象廃棄物は台車上を6ステップ移動させ、各測定時間は可変(3〜300秒)とした。得られた計数値を散乱線/直接線の比率により線源の自己吸収を補正し、前述の最尤法と同様、繰り返し演算により真価との誤差を小さくする逐次近似法を用いて解析する。単純形状(配管、板など)の対象物に対し目標の位置分解能(10cm以内)と検出感度が達成できた(Fig.7)。

![Fig.7 Performance of the Radioactivity Distribution Measurement Apparatus](image)

測定対象配置(一線源位置) 分布測定結果

試験体 100A 900mm 测定ビッチ 100mm
測定時間 8分/ステップ

対象廃棄物については、単純な形状から弁、ポンプなどの複雑な形状まで幅広く適用性を検討した。この結果、単純形状物の分布は正しく測定したが、ポンプのような複雑形状物で内部汚染の場合には、ピーク位置を正しく把握できない場合もみられた。
これは放射線特性上の虚像が生じるためで、複雑形状の分布測定には分解または切断を行い、汚染面を検出器に面させて測定する必要があることが判った。

また、本分布識別技術の補助的技術として、一般産業用テレビによる実画像と放射線分布データを重ね合わせ画像処理を行い、対象廃棄物の形状と放射性物質分布とが対応できるようにした。処理された画像は汚染分布情報に基づく自動切断操作を行う場合などの出力情報となる。

4．解体廃棄物処理システム技術

解体廃棄物処理システム技術の確認試験は、既に上述の2章、3章において説明した要素技術などをシステム的に組み合わせ、汚染金属解体廃棄物を実機に近い規模で自動的に処理できることを確認するための総合機能確認試験を行った。

- 解体後処理：プラスト除染、電解除染、強力化学除染
- 解体廃棄物測定：極低レベル測定、汚染分布識別
- 切断：プラズマアーク法

なお、試験実施場所等の制約から、放射線計測にはCo-60点線源を、除染には非放射性の試験体を用いて試験し、既に得ているホット/コールドの相関性に基づき性能確認した。

システム構成は次の通りである。(Fig.8)

対象物量：2～4万t/プラント
設置場所：機器解体後のタービン建屋内等
稼働時間：20～30ヶ月

Fig.8 Bird's Eye View and Flow Diagram of Decommissioning Weste Processing System (for Metal)
・廃棄物の別入部：搬入された廃棄物の受入れに際し、事前に形状、材料などの情報を入力する。また、対象廃棄物の重量を測定し、中央制御盤にデータを送信する。
・汚染分布識別：放射性物質の濃度と分布を測定し、画像処理により試験体の輪郭情報を得る。分布情報より前半的な汚染を判別した方が有効と判断されるため、切断装置で不要部分を切断する。
・試験部：形状情報を基に、単純形状であればプラストー電解解体、複雑形状であれば強力除染を行う。除染後、洗浄、シャワー、乾燥し、重量測定する。
・極低レベル測定部：廃棄物の放射性物質濃度を測定し、測定結果を基に汚染レベルに応じて区分する。

試験体としては、材質、形状、線源強度の廃棄物条件を各種設定し、また、除染処理後にホットスポットが残留した場合を想定して、種々の条件で試験を実施した。

システム処理に要する時間は、一般に比較的高いレベルの放射性廃棄物では測定は短時間で済むが、除染に長時間要する。一方、比較的低い放射性廃棄物では測定が長時間要し、除染は短時間で処理できる。また、個々の処理を結ぶために要する時間等は放射性物質濃度に依らない。このため放射性物質濃度が4×10^{-6}～4×10^{-5} Bq/tの廃棄物において試験したところ、1バッチの処理に要する時間は大差なく、60～150分の範囲であった（Fig.9）。

極低レベル測定技術については、クリアランスレベル、トレーン処理上の値の想定値を正確に区分でき、目標値0.04 Bq/g、10t/hで処理できることを確認した。

除染技術については、ジルコニアビーズ（平均粒径100μm）を用いたウェットブラスト、硫酸濃度0.5 mol・dm^{-3}中的電解除染（0.3A・cm^{-2}）、セリウム4価濃度0.4mol・dm^{-3}の強力化学除染により目標厚みを剥離又は溶解することを確認した。

汚染分布識別技術については、放射性物質濃度を0.3～500 Bq/gと巾広く振って試験し、10cmの単位で目標値以下0.4 Bq/gまでの区分を2 t/hで処理できることを確認した。

なお、この試験はコールドの試験体による試験であるため、除染性能の確認はあるかじめ行ったホット/コールド試験体の相関によっている。今後は更に、実機材料を用いたホット試験による確認が必要であり、関係者の協力を得て実施する計画である。

5. むすび

原子力機構が実施してきた廃炉設備確認試験のうち、除染及び放射線計測技術について、概要とこれまでの成果を中心に述べた。今後も、これまで実施中の試験を継続するとともに、実機材料を用いたホット試験を関係者のご協力により進める、実機に確実に使える技術として確立してゆく予定である。

6. 謝辞

筆者らは、本確認試験の委託元である通商産業省原子力発電課の関係者の方々、試験の計画及び結果を審議して頂いている委員会委員長の石橋敬志・東大教授をはじめ、委員他の関係者に深く感謝します。

出典
1）小野澤、杉原：実用発電用原子炉廃炉設備確認試験－解体技術について－デコミッションング技術第3号13頁（1991年）
2）石橋敬志：デコミッションング技術の最近の動向 ランデック第二回報告と講演の会（1990年11月）
ATOX Co., Ltd., offers nuclear facilities maintenance services, has been engaged in the development and improvement of decontamination techniques and equipment, for the safe and efficient operation, as well as reducing workers' dose equivalent.

Wall cleaning system, for the reactor well and cavity in nuclear power plant, is an important part of our decontamination technologies. The first Roll-type Cleaning System developments were 1972, applications to nuclear power plant were many types, 45 systems from 1972 up to our days.

Recently, AC-type Cleaning System, introduced in almost all BWR plants in Japan, contributes to shortening the scheduled outage period and reducing workers' dose equivalent due to the specific operation method. Overhang-type Cleaner, Handy-type Small Cleaner, and Looper-type Wall Cleaner (for narrow area on the wall) are development phase, but are expected to be widely applied to various wall shapes and conditions.

Furthermore, Chemical and Flowing Abrasive System Decontamination demonstration has been under way, using Test Loops with due regard to system decontamination at the time of nuclear facility decommissioning. The Test Loops consist of test section, circulating section, ion-exchanging section, etc., where chemicals temperature, flow rate, regeneration and other conditions can be controlled. Decontamination efficiency of various chemical process have been estimated using test pieces which are coating pipes and valves with oxide layer by hydrothermal synthesis.

This paper introduces those decontamination technologies developed by ATOX Co., Ltd.
除染機」と及び「配管系除染用試験ループ設備」である。
壁面除染機は、1978年にロール型簡易除染機を開発して以来、現場に導入した機種は十数種類、総数は45機に及んでいる。
現在の主力は「AC型除染機」であり、国内のほとんどのBWR施設に導入されている。本除染機は、ウエル等の水抜きと同時に除染作業が可能であるため、特に「定検短縮」及び「被曝低減」に効果を発揮している。その他、「オーバーハング壁面対応型除染機（クローク型）」、狭隘部の除染が可能な「扁平尺取り型除染機（LT型）」、人手による運搬が可能な「軽量小型除染機（スパイダー型）」等を開発中であり、現場の状況及び用途に適した機械の研究開発を行っている。
また、原子力施設デコミッションング時における配管系統除染作業を実現、試験ループを製作し、系統化学除染及び系统流動研究除染実験を実施している。この試験ループ、除染試験部、循環部及びバイオミックス再生部等から構成されており、除染剤温度、流速の制御、流速測定、除染選の再生等を行うことができる。除染試験機に水熱処理によって模擬クッラドを付着させた配管、バルブ及び小型試験体を用いて各種除染工法の除染性能を評価し、系統除染に関する技術を蓄積している。

2. 鏡面除染機の開発

弊社の除染機の開発は、昭和53年のロールウォールクリーナーに始まり、現在ではTable1に示すように数種類の除染機の開発を行うまでに至っている。
開発に当たっては、長年にわたり除染会社として蓄積してきたノウハウの活用と、顧客の要求を的確に反映させることを常に念頭に置いていた。
原子炉ウエル除染は、設備の保全のみならず、炉水の水抜き後の原子炉系RPV等旧設備の作業時における低減及び、汚染防護設備の軽減のためにも必要である。
近年、除染時間の短縮、被曝の低減、人工の削減等が強く要求されており、水抜きと同時に除染作業を行う台車を用いるながらウエル周りを走行可能なAC型除染装置を開発、改良してきた。この装置を使用すると水抜きと同時に除染作業が可能であるため、作業時間が従来と比較して6時間程度短縮される。また、遠隔操作のため、作業者の被曝低減及び、人工の削減も可能となった。

Table 1 Experiences & Progress of Well and Cavity Wall Cleaner

<table>
<thead>
<tr>
<th></th>
<th>第一世代</th>
<th>第二世代</th>
<th>第三世代</th>
</tr>
</thead>
<tbody>
<tr>
<td>型式</td>
<td>P型</td>
<td>P型</td>
<td>P型</td>
</tr>
<tr>
<td>構成</td>
<td>ガードリング</td>
<td>ガードリング</td>
<td>ガードリング</td>
</tr>
<tr>
<td>第一世代</td>
<td>P型</td>
<td>P型</td>
<td>P型</td>
</tr>
<tr>
<td>構成</td>
<td>ガードリング</td>
<td>ガードリング</td>
<td>ガードリング</td>
</tr>
<tr>
<td>第二世代</td>
<td>P型</td>
<td>P型</td>
<td>P型</td>
</tr>
<tr>
<td>構成</td>
<td>ガードリング</td>
<td>ガードリング</td>
<td>ガードリング</td>
</tr>
<tr>
<td>第三世代</td>
<td>P型</td>
<td>P型</td>
<td>P型</td>
</tr>
<tr>
<td>構成</td>
<td>ガードリング</td>
<td>ガードリング</td>
<td>ガードリング</td>
</tr>
</tbody>
</table>

※AC-3型及び第三世代の除染機は展開期入荷予定

38
2.1 除染装置概要

1) AC－I，II型除染装置(Advanced Curve 型)

AC－I 型は、現在原子炉ウェル、ドライヤー
セパレータ(D/S)プレール壁面除染に使用されてい
るもので、専用の台車レールを設置し、ウェル水
抜きと同時に天井クレーンを使用することなく除
染機を走行台車に吊り下げ除染する。

① ウェル除染機

ウェル除染機は、除染を行うためのプラン
と、ブラシを壁面に押し付けるための真空吸着
盤及び、壁面を走行するための駆動車輪から構
成されている。

② 真空ユニット

壁面除染機をウェル壁面に真空吸着するため
の動力源と各機器の制御盤の他、ユニットリテ
ノを中継する機能を有している。

③ 走行台車

AC－I 型

走行台車はウェル壁面の仮設台車レール(支
柱に2本のレールを設置)上を走行し、除染機
を吊りながら連動して走行する。(Fig.1)

AC－II型

AC－I 型に加えて除染機のホース、ケーブ
ルを自動巻取りドラム機構を備えた、後輪は
床面走行するため、床面突起物に応じて高さ調
整ができる。(Fig.2)

③ 台車レール

走行台車をウェルの円周上に走行させるため
のレールで、AC－I 型は上下2本のレ
ールからなり(Fig.1)、AC－II型は1 ボレ
ールとし、レール設置作業と収納スペースの低
減を図った。

2) AC－II型除染装置

当除染機は、AC－II型除染機から以下の改良
を含んでいる。

・走行台車内に真空ユニットを搭載することによ
り、小型化した。

・走行台車は4輪とも床面走行可能とし、従来の
支柱型レールを約1/3に削減した。フロアに
段差のない場合は、レールは不要である。
(Fig.3)

3) クローラ型除染機
クローラ型除染機は、D/Sプールのオーバーハング部用に開発された除染機で、足部に吸着盤を持ち、接地面の吸盤だけで除染機を保持している。

この除染機は、オーバーハング以外にもウェル等の曲面でも除染可能である。

4) LT除染機（Looper Travelling）
LT型は、原子炉壁面の狭隘部の除染を可能にするために開発された除染機である。
除染機も、バランスリングを内蔵した専用ウインチで、除染機を無重力状態にして、天井クレーンにて吊り下げる動作させる。

5) SPIDER型除染機
(Super Small Intelligent Decontaminator)
スパイダー型は一般の除染機で除染できない狭隘部を対象に開発された除染機である。超小型軽量（5〜10kg）であるため一人で持ち運びができる、セッティングも容易で、また、省エネルギー設計

で電池（リチウム電池4ヶ）でも使え、操作も簡単である。

6) 水中クリーナ（MT−II型）
水中クリーナは、タンク・ピット等で、水を張った状態で底面に堆積したクラッド、水垢、ゴミ等を吸引回収する除染装置である。移動はエアモータによる車輪駆動である。
また、装置全体は所定のマストから搬入ができるよう小型に設計されている。また、運転状況をオペレータ上で確認するため、水中照明、水中カメラを各々2台、備えている。(Fig.4)

7) 水底クリーナ（MT−III型）
本装置は、ピットやタンク内のクラッド回収用の除染装置で、本体走行用電動機、クラッド吸引ノズル、ポンプ等から構成されている。本装置は堆積したクラッドを自走自吸しながら回収し、オペレータ上に設置されたフィルタユニットで水処理し、既設のドレンにより排水する。
この装置は複合光ファイバーケーブルを用いた遠隔制御方式を採用している。車体内には処浄水を圧送し、汚染水の流入を防ぐ設置をしている。

8) 水底クリーナ（電気制御方式）
この水底クリーナ装置は、ピット、貯水タンク
等の暗視界作業時に用いる除染装置で、前述した圧空駆動機構の制御系を全て電気式に変え、パソコン制御により自動運転が可能である。吸引移流方法は圧空を利用している。概要をFig.5 に示す。本体に、車輪駆動用ACモータ、光ジャイロ、光距離センサ等を備え、オペレーターソのパソコンと連結し、キーボードにより運転操作が可能である。あらかじめ、作業エリアをパソコン上で設定し、除染機の軌跡をCRT上に表すことによりリアルタイムに除染状況が把握できるシステムとなっている。

3. 配管系統除染技術の開発

3.1 技術開発の目的

近年、供用中の発電用原子炉において部分的な系統化学除染が実施されている。さらに、今後、原子炉施設のデコミッションング時には使用済燃料搬出後から系統除染が行われる予定である。国内における実用炉（原発東海1号炉）のデコミッションも計画されており、また施設高齢化対策の一環として、系統除染の必要性もより高まるものと予想される。

当社ではこれらの現状を考慮し、予想される系統除染に対応可能な除染技術を検討するため、除染工法に係る調査及び模擬ルーブによる試験等、種々の研究開発を行っている。模擬ルーブは除染試験部（系統を模擬する直管部、エルボ及び井等から構成）、除染剤循環部及びイオン交換再生部等から構成されており、次各部分を目的として除染試験を実施している。

① 系統除染技術上の問題点の把握及びその解決
② 複合系統除染技術（超音波除染法との併用等）の開発
③ 系統除染技術の習得及びデモンストレーション
④ 新除染技術の開発
⑤ 除染廃液処理方法の開発
⑥ 系統除染の合理的方法及びその経済性評価

3.2 模擬試験ルーブの概要

(1) 試験ルーブの条件

当ルーブは、上記①〜⑥に必要な試験データを得るため、各種系統除染技術の工学的特性を試験できるものである。すなわち、性能として次に示す要件を満たしている。
① 実際の除染作業（系統除染及び機器除染）を
シミュレーションできる
② 安定した試験条件（温度及び流量等）が得られる
③ 除染試験部分の装置の組立及び取り外しが容易である
④ 各種除染工法（化学除染及び複合除染法等）が試験できる

(2) 試験ループの構成

Fig.6 に試験ループの構成図を示す。

薬液調製・注入部は、調製及び加熱した除染剤を循環部に注入する機能を有している。除染試験部には水熱処理により表面に厚さ約1μmの酸化物被膜を付着させた小型試験体（11mm×11mm×1mm）、内面に酸化物被膜を付着させた高圧試験体（1インチ）及びバルブ試験体を配置しており（Photo 1）、循環部のヒータによって加熱された除染剤が試験体中を循環するようになっている。イオニン交換再生部は、除染試験部及び循環部で消耗した除染剤及び溶解した金属イオンを回収・精製し、再度系内へ注入するためのものである。水質測定部では除染剤の電導度、

Photo 1 Overview of the Test Section
溶存酸素濃度及びpHの連続測定によって除染条件を監視し、データ処理部で水質データ及び温度データ等を収集する。
また、液体流動研磨除染を試験するためのスラリータンク及びスラリーポンプも備えており、化学除染のラインと切り離して循環できるようになっている。

3.3 研究開発概要
(1) 系統化学除染
供用中施設の系統に適用する化学除染法は従事者の一線当量低減が目的であり、また除染後の配管の健全性を考慮し、低濃度かつマイルドな水質条件（pH等）で行うことが国内外ともに主流になりつつある。一方、デコミシニング後の系統除染は線量当量低減及びクリアランスレベルに基づく徹底除染が主な目的であるので、供用中除染より高いDFが望まれる。
現在までに開発されている数多くの化学除染法は、その除染性能及び除染部の健全性とともに完成度の高いものであると考えられる。一方、系統除染が必要とする施設は発電用原子炉施設だけでなく、燃料加工施設・試験・研究用原子炉施設及びRI使用施設等、その使用目的及び系統規模（配管径及び全長）が非常に多岐にわたっており、これらの施設を同一の条件で除染することは不可能である。除染対象とする施設・設備に合わせた除染工程・温度及び水質条件を除染性能の範囲内で調整することが現実的である。また、系統は多くの配管構成部品（バルブ、フィード、エルボ、ポンプ及びドレンレッグ等）から構成されており、流動条件の変化、狭隘部の除染効果も考慮しなければならない。
そこで、前述の各号を目的として次に示す試験を実施している。

① 代表的な化学除染法による基礎試験
② 各種条件を変化させた場合の化学除染試験
③ 系統各部の除染試験

(2) 液体流動研磨除染法
液体流動研磨除染法は水を媒体として研磨材を流動させ、研磨材と配管内壁との物理的な接触によりクラッドを除去する方法である。除染例として、研磨材に#60のアルミニ粉末を用い、研磨材濃度5vol%、代表流速5m/s、10時間研磨後の外観をPhoto2に示した。除染前後の分析の結果、酸化物被膜（模擬クラッド）を約90%以上除去できることを確認した。

Photo 2 Decontamination Test Piece using Flowing Abrasive Method
(Original and after Abrasive)

液体流動研磨除染法は物理的除染法であるため除染操作自体は単純であるが、廃棄物処理の面での課題が残されている。すなわち、研磨除染に流動研磨法を適用する場合、今までの知見によれば、研磨後の配管の健全性を確保する必要があること、系統内の研磨材を完全に除去することが困難であること等の理由により、供用中施設よりもデコミシニング時の測点除染に用いることが適当であると考えられる。しかし、諸問題点を解決し、適用範囲を拡大させることが次に示す研究目的の一つである。

① 液体システム流動研磨除染技術の問題点の解決及び高度化の研究
液体研磨法の適用範囲を拡大させるための条件、すなわち研磨材の種類、流動形式及び除染工程について様々な角度から検討を行う。特に研磨材の種類については、流動性の
高い低比重（2〜2.5）の研磨材を用いて除染試験を行っている。
(2) 同技術の習得及び実用化
原子力施設に系統除染を適用するにあたっての技術的経験及び基礎データを蓄積する。
(3) 廃棄物処理方法の開発
使用済フィルタ、研磨材、スラッジ(クラッド及び破砕された研磨材の混合物)等の廃棄物を効果的に処理する方法を開発する。

4. おわりに
当社が現在までに開発してきた壁面除染装置及び配管系統除染技術について紹介した。デコミッションにおいては空気環境量の低減が必要である。さらにクリアランスレベルの考え方が導入されれば、除染すべき機器・設備等が増加することになり、除染に対する要求は多くなると共に、その仕様が厳しくなることが予想される。また、機器・設備等の汚染物質は場所、運転状況によって性状レベルが異なっており、それぞれ最も適した除染法の採用の検討が必要である。これらに対応するため、今後も最適除染の研究を目指し研究開発を進め行う予定である。

参考文献
1) 坂岸、三村、橋井：「系統除染ループによる技術開発」、日本原子力学会「1996秋の大会」予稿集 B43 (1996)
2) 坂岸、橋井、河村：「系統除染ループによる技術開発(2)」、日本原子力学会「1997春の年会」予稿集 H27 (1997)
Fundamental experiments were conducted for establishing the special decontamination technique using hydro-oxyl-radical method for radioactive contaminated solid wastes.

As results, it was confirmed that this method is applicable for system decontamination because the half life time of Ag(II) ion is comparatively long, and also it is able to re-use the recovered silver from the foul solution after decontaminated.

This report describes the optimum conditions such as producing Ag(II) ion, concentration of nitric acid and silver, anode potential, electrolyte temperature, recovering the metallic Ag, etc.

This study is a part of the project of RANDEC under the sponsorship of the Science and Technology Agency of Japan.

1. はじめに

近年、海外の原発先進諸国は、原子力施設のデコミショニングの高度化技術を駆使して、システムエンジニアリングの急速な進展がみられる一方で、大きな課題を抱えている。それはデコミショニングの経済性であり、これを向上するための主要なもののは処分地と処分費である。今後、処分費を如何に

[Japanese text]

本稿は、科学技術庁より受託している「原子力脱核施設デコミショニング」の一部である。

* Research Association for Nuclear Facility Decommissioning
** Kyusyu University
*** Sumitomo Metal Mining Co., LTD.
2. 試験方法

2.1 基本除染特性の把握

2.1.1 除染条件の最適化

ラジカル法による金属の除染を行う場合、硝酸銀溶液の陽極酸化によってAg(I)からAg(II)へ効率的に酸化させるための最適条件を把握するため、除染対象金属が存在しない状態で、以下(1)〜(5)の各試験項目を実施した。

(1) 電解液組成としての硝酸濃度及び銀濃度をパラメータとした試験

[試験条件] 硝酸(HNO₃)濃度: 2〜10規定

(N), 銀(Ag)濃度: 0,05〜0,4 (mol/l)

(2) 電極面積をパラメータとした試験

[試験条件] 電極面積: 1,9〜2,4V

(3) 電極面積による効果確認試験

[試験条件] 電極面積: 60〜180 (cm²)

陽極と陰極の面積比: 1〜3

(4) 電解時の溶液温度による効果確認試験

[試験条件] 溶液温度: 25〜40 (C)

(5) 電解隔膜の有無による電解酸化の影響を確認する試験

隔膜の材質: セラミックス(多孔質アルミナ)

(6) Ag(II)の寿命試験

[試験条件] (1)〜(5)で得られる最適条件下で生産したAg(II)の寿命を測定する。

これらの試験では、Fig.1に示す定電位の電解酸化試験装置を使用した。電解槽は陽極(白金)と陰極(白金)を多孔質アルミナ電解隔膜で仕切、カソライオンは硝酸溶液、アノライオンは硝酸銀溶液としてマグネティックスターラーで振拌する装置とした。電解試験には、定電位・定電流の電解装置を用い、ルギン管を介して銀・塩化銀電極を参照電極として、一定電位に制御した。なお、電解試験中の電流値は、クーロンメータによって通電電気量を測定し、試験時間より平均電流値を求めた。

一方、電位と電流の関係を測定する方法として、溶液中に作用電極を浸漬し、一定的な自然電極電位を確認後、自然電位から+2,7V程度まで電位を測定して電位-電流曲線を測定した。このとき、電位を一定速度で変動するために、ファンクションジェネレータを用い、電位の変動速度は50mV/minとした。
図の目的で、これら有機物の分解特性能を把握するための確認試験を行った。分解特性は、EDTAについて鉛（Zn）添加法によって溶液中の濃度変化を測定し、イオン交換樹脂については分解の前後における重量変化を測定することによって評価した。さらに、これら有機物が溶液中で無機化された状態を確認するため、TOC（全有機炭素）の測定を合わせて行った。

2.2 鉛の選択的回収性能の把握
二次廃棄物発生量の低減及び鉛の再利用を図る目的で、除染廃液中から選択的に鉛を回収する際の最適条件を決定するために、以下に示す第2.2.1及び2.2.2項の各試験を実施した。

2.2.1 鉛の選択析出条件の把握
除染廃液中から鉛を選択的に回収することを目的とし、硝酸濃度、陰極電位及び陰極面積をパラメータとして、陰極への鉛析出の最適条件について調べた。鉛の析出効率は、陰極に析出した鉛を硝酸溶液に再溶解させて、この硝酸溶液中の鉛濃度をICP発光分光分析法で測定することによって評価した。
一方、除染廃液中の共存元素の影響を確認するため、鉄、クロム、ニッケル等の金属元素と鉛との分離係数についても測定を行った。

2.2.2 回収鉛の再溶解挙動把握
除染廃液から鉛を回収する電解操作によって陰極に析出・回収した鉛を、再び電解液（除染液）とし、除染操作を行う系へリサイクルすることが目的である。本試験では、陰極に析出した鉛の電解停止後の再溶解特性を把握するため、電解停止からの経過時間をパラメータとする溶解試験を実施した。具体的には、電解停止時の溶液中の鉛濃度を初期値とし、一定時間経過後の溶液の鉛濃度を測定して初期値と比較することにより、鉛の再溶解挙動を評価した。

2.1.2 各種金属の溶解試験
ラジカル法による除染では、金属表面を均一に溶解することによって表面に付着した放射性物質を除去することが特徴である。ここではラジカル法の溶
解性能を評価する目的として各種金属の溶解特性を把握するために、第2.1.1項における検討で得たラジカル法の最適電解条件に基づき、ステンレス、ジルコニウム等の金属試験片について溶解試験を行った。なお、実際の除染対象物は表面酸化を形成しているが予測されるため、表面に酸化皮膜を有する金属試料についても溶解試験を行った。

各種金属の溶解速度は、電解液中の溶解金属成分の濃度推移を測定することによって求めた。一方、これら溶解試験後の金属試験片については、走査電子顕微鏡等を使用し、その表面状態観察によって評価した。

2.1.3 有機物の分解試験
化学除染を実施する際に使用されているEDTA（有機物）は種々の用途と安定なキレートを形成する。また、除染廃液を処理する際に使用される有機系イオン交換樹脂は二次廃棄物となるので、これら有機物は、保管・廃棄、処理・処分の観点からは無機化することが望ましい。
本試験では、ラジカル法の特徴である強酸化特性を利用し、EDTA、イオン交換樹脂等の無機化を
3. 結果と考察

3.1 基本除染特性の把握
3.1.1 除染条件の最適化
(1) 電解液組成としての硝酸濃度及び堿基濃度をパラメータとした試験
①電極一電極間の電流密度の測定
HNO₃濃度を2～8Nの4点とし、Agを0、2mol/l添加した場合としない場合の電極一電極間の電流密度を測定した。この結果、同じ電位であってもAgが存在する場合にはHNO₃のみの場合と比較してより大きな電流が流れることがわかった。

これらのデータを各HNO₃濃度ごとにAg添加溶液の電流値とAg無添加溶液の電流値との差をとて整理したものをFig.2に示す。この電流値の差はAgの酸化に消費された電流の大きさを表す指標と考えられる。いずれの硝酸濃度の場合でも、Agの酸化に消費された電流の大きさは、ある極大値を有することがわかった。すなわち、Fig.2で電流が極大となる約2.1Vの陽極電位において、Agの酸化効率は最も高くなることが示された。

一方、HNO₃濃度が低くなると、以下のように非対称化が推定される酸化物の生成量が多くなるものと考えられる。

$$2Ag^+ + 3H_2O → Ag_2O_3 + 6H^+ + 4e^-$$

②Ag(II)生成の最適条件検討
HNO₃濃度及びAg濃度をパラメータとしてAg(II)の生成条件を検討した。

初期Ag濃度を0.2mol/lで一定としHNO₃濃度を2～10Nとした場合、電解した電気量と生成したAg(II)イオン濃度との関係をFig.3に示す。この結果、初期に添加するAgの濃度が一定であれば、HNO₃濃度の高い方が生成するAg(II)イオン濃度は高くなることがわかった。

![Fig.3 Effect of nitric acid concentration](image)

一方、HNO₃濃度を8Nで一定とし、初期Ag濃度を0.05～0.4mol/lに変えた場合の通電した電気量と生成したAg(II)イオン濃度との関係をFig.4に示す。

HNO₃濃度が一定であれば、初期に添加するAg濃度の高い方が生成するAg(II)イオン濃度は高くなることがわたった。

(2)陽極電位をパラメータとした試験
HNO₃濃度を8N、初期Ag濃度を0.2mol/lで一定とし、陽極電位を1.9～2.4Vで変化させた場合の電気量と生成したAg(II)イオン濃度の関係をFig.5に示す。この図より1.9Vでは、生成するAg(II)イオン濃度は他の電位の場合と比較して有意に低く、2.0～2.4VではAg(II)イオンの濃度は0.05mol/l程度で、ほぼ平衡に到達している。
Fig.4 Effect of initial Ag (II) concentration

Fig.5 Effect anode potential

Fig.6 Comparison of Ag (II) concentration by electrodeposition constant time

(3)電極表面積による効果確認試験
HNO₃濃度を8 N、初期Ag濃度を0.2mol/1、陽極電位を2.1Vで一定とした、陽極の表面積を60, 120, 180cm²としたときの電気量と生成したAg(II)イオン濃度との関係を図7に示す。ただし、陽極面積は60cm²で一定とした。この図より陽極面積を2〜3倍にしても、Ag(II)イオン濃度は陽極面積と依存性のないことがわかった。
これは硝酸銀溶液中での平衡 Ag（II）イオン濃度、あるいは見かけ上の酸化還元反応 Ag + \rightarrow Ag$^{2+}$ + e$^-$ の平衡定数は HNO₃濃度、全 Ag 濃度及び、電解液温度に依存するものと考える。陽極面積は無限に小さくてもいい訳ではなく、本試験の陽極溶液に対して十分であっただけで、さらに酸化が起きなければ陽極表面の物質移動が律速となり、Ag（II）イオンの生成効率の低下する領域が存在するものと考える。

(4) 電解時の溶液温度による効果確認試験

HNO₃濃度を 8 N、初期 Ag 濃度を 0.2mol/l、陽極電位を 2.1V で一定とし、電解液の温度を 25、40℃としたときの電気量と生成した Ag（II）イオン濃度との関係を Fig.8 に示す。この結果、電解液温度が低い方が生成する Ag（II）イオン濃度は高くなることがわかった。これは硝酸銀溶液中での平衡 Ag（II）イオン濃度、あるいは見かけ上の酸化還元反応 Ag + \rightarrow Ag$^{2+}$ + e$^-$ の平衡定数は温度依存性があり、温度が高いほど反応が左に進んだため Ag（II）イオン濃度が減少したもののと考える。一般的な電極反応の平衡電位は、ネルンストの式の平衡電位 K が exp(1/T) に比例することからも説明できる。

![Fig.8 Effect of anolyte temp](image)

(5) 電解隔膜の有無による電解酸化の影響を確認する試験

HNO₃濃度を 8 N、初期 Ag 濃度を 0.2mol/l、陽極電位を 2.1V で一定とし、電解液温度を 25℃で一定とし、隔膜を用いず陽極溶液と陰極溶液とを区別しない状態で Ag の酸化試験を行ったが、1時間経過後の Ag（II）濃度は分析下限以下 [Ag（II）濃度換算で 0.002mol/l 以下] であり、隔膜を用いない状態では Ag（I）から Ag（II）への電解酸化は成立しないことがわかった。

(6) Ag（II）の寿命試験

Ag（II）イオンの寿命を把握するため、電解液組成として HNO₃濃度 2～8 N、初期 Ag 濃度 0.2mol/l、陽極電位 2.1V の場合で、Ag（II）濃度が平衡に達するまで十分な時間、定電位電解を行った後、電解を停止してからの経過時間と Ag（II）濃度の変化を測定した。その結果を Fig.9 に示す。初期 HNO₃濃度が高いほど、Ag（II）イオン濃度は高く、半減期が短く、比較的安定して存在する傾向のあることが判った。水酸基ラジカルの寿命は 10⁻¹秒オーダーであるが、Ag（II）イオンの寿命すなわち半減期は電解酸化直後から 2 時間であり、電解酸化後約 1.5 時間以降での Ag（II）イオン寿命は实用で約10時間であった。このことは、当初予想していた寿命より比較的長いことから、長い配管等の系続除染にも適用できるものと考える。

![Fig.9 Change of Ag（II）concentration on standing](image)

一方、初期 HNO₃濃度が低いと短時間で Ag（II）イオン濃度は減少し、Ag（II）イオン濃度が低い傾向にあることを確認した。このことは、機器の交換・修理等で電極を除く低減や一部機器の再利用を考える場合、初期 HNO₃濃度を調製する場合に如何様にも溶剤や腐食の程度を制御し、適用範囲の広い除染ができる見通しを得た。
3.1.2 金属溶解試験

(1)初期Ag濃度の影響

HNO₃濃度を8 N、溶解時間を2 Hrとし、初期Ag濃度を0.05〜0.4mol/1の範囲で変化させたときのAg濃度とSUS304試験片の溶解速度の関係をFig.10に示す。

その結果、初期Ag濃度が0.2mol/l近傍でSUS304の溶解速度が最大となること、及びSUS304の溶解波中の組成は初期Ag濃度とは関係なく、ほぼSUS304成分の組成で溶解しており、溶解成分に偏りのないことを確認した。

このことは、試料時分の除染ばかりでなく、除染後の材料組成に変化を与えることなく除染できることで、保守時の被ばく低減のための除染にも適用しうることが期待できる。一方、無酸銀の水に対する溶解度は241g/100gH₂Oでないので、0.4mol/l以上についても確認すべきとも考えたが、0.2mol/l近傍溶解速度の最大値を得ているので、今後必要に応じて確認することとした。

![Fig.10 Relationship between initial Ag (I) concentration and velocity of dissolution](image)

(2)硝酸濃度、溶解時間及び酸化被膜の影響

①初期Ag濃度を0.2mol/1で一定とし、HNO₃濃度を8、12NとしたときのSUS304試験片の溶解速度について測定した。その結果、HNO₃濃度の高い方が溶解速度が大きくなることがわかった。ちなみに、HNO₃濃度8、12NのAg（II）の8時間後の平衡濃度は、各々0.05、0.06mol/lであった。この平衡濃度を先に実施した図VIII-9から外挿すると10時間後の濃度に相当する。定性的ではあるが、この時間差、つまり2時間早くこの濃度に到達したのは、SUS304の溶解に消費されたAg（II）と推定する。

溶解時間を2時間及び8時間としたときのSUS304試験片の溶解速度を測定した結果、硝酸濃度には依存せず溶解を長時間継続すると平均溶解速度は低下する傾向が見られた。溶解時間が2時間後の試験片を電子顕微鏡で観察した溶解表面をPhoto 1に、溶解断面をPhoto 2に示す。この写真から粒界部より溶解が進み、粒界面が台地のように浮き上がっていることがわかる。溶解がこのようなプロセスで進むことは、除染対象物の表面の粒界に汚染核種が入り込んでも容易に除染し得るものと考える。

酸化皮膜の有無に伴うSUS304試験片の溶解速度を測定した結果、酸化皮膜を有する場合は酸化被膜の無いものよりも溶解速度が1.5倍低下することが判った。酸化皮膜試料片の溶解試験後の観察では、試験片エッジ部が優先的に溶解されていることがわかった。

![Photo 1 Resolved surface of SUS 304 (Secondary electron-beam image)](image)
3.1.3 有機物分解試験
(1)イオン交換樹脂の分解試験
初期Ag濃度を0.2mol/l、HNO₃濃度を8N、電位2.1Vとして樹脂の分解試験を行った結果をTable 1に示す。自然乾燥後の樹脂には飽和水分が60％含まれており、固形分中の炭素の割合は78％である。また、有機炭素の分析結果から炭素は0.04(g/l)の濃度で電解液中に残存していたので、残存分以外の炭素は全て炭酸ガスとして分解放出されたものとして、分解された炭素量を次の計算から求め、0.099gを得た。

計算：

\[
0.548 \times (1 - 0.6) \times 0.78 - 0.04 \times 1.8 = 0.099 (g)
\]

この分解反応に要した全電気量は73,026(C)であったので、単位量当たりの炭素を分解するのに必要な電気量は7.4×10³(C/g-炭素)となることがわかった。

(2)EDTAの分解試験
初期Ag濃度を0.2mol/l、HNO₃濃度を8N、電位2.1VとしてEDTA分解試験を行い、EDTA濃度の経時変化をFig.11に示す。電解後の全炭素濃度は0.55(g/l)であり、イオン交換樹脂の溶解に係る評価と同様に、残存分以外の炭素は全て炭酸ガスとして分解放出されたものとして、分解された炭素量を次の計算で求め、約2.7gを得た。

計算：

\[
5.0 (g/l) \times 1.8 (l) \times 120/292 - 0.55 (g/l) \times 1.8 (l) = 2.705 (g)
\]

この分解反応に要した全電気量は118,292(C)であったので、単位量当たりの炭素を分解するのに

<table>
<thead>
<tr>
<th>Table 1 Result of decomposition test of resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>電解前</td>
</tr>
<tr>
<td>樹脂重量(dry-g)</td>
</tr>
<tr>
<td>全有機炭素(g/l)</td>
</tr>
</tbody>
</table>

Fig.11 Change of EDTA concentration
に必要な電気量は4.4×10⁷(C/g−炭素)であることがわかった。
この結果を前項の樹脂の分解試験結果と比較すると、1位量当たりの炭素を分解するのに必要な電気量は、固体の有機炭素を分解するよりも液体の有機炭素を分解する方が、1位電気量の小さいことがわかった。

3.2 銀の選択性回収性能の把握
3.2.1 銀の陰極析出条件の把握
(1)電位−電流曲線の測定と銀析出量の把握
①HNO₃濃度2〜8 N、初期Ag濃度0.2mol/1の溶液における電位−電流曲線を測定し、その結果をFig.12に示す。HNO₃濃度が8及び6 Nのとき、Agはほとんど析出せず、HNO₃濃度の低い2及び4 Nの方がAgの析出が容易で、析出量は各々10.6g及び1.1gであった。

![Fig.12](image1)

カソード電位（V vs. SSE）
Fig.12 Potential−current curve(1) in reduce reaction

HNO₃濃度が8及び6 Nのとき、Ag(I)の還元反応は進行せず、NOxガスの生成が起きているものと推定される。その反応は、

\[
\text{NO} + 2\text{H}_2\text{O} = \text{HNO}_3 + 3\text{H}^+ + 3\text{e}^- \\
\text{NO}_2 + \text{H}_2\text{O} = \text{HNO}_2 + 2\text{H}^+ + \text{e}^-
\]

等と考える。濃度が2及び4 Nと低くなるに従い、HNO₃の還元反応の割合が低下しNOxガスの発生が抑制され、Agの析出が効率良く析出したものと考える。
(2)上記①項の結果から、析出回収率の良好な濃度の低い場合のHNO₃濃度4 N、初期Ag濃度0.1 mol/1の溶液及び、HNO₃濃度2 N、初期Ag濃度0.05mol/1における電位−電流曲線を測定し、その結果をFig.13に示す。その結果、HNO₃濃度の低い方（2 N）がAg析出量が1桁多く回収できることはわかった。

![Fig.13](image2)

カソード電位（V vs. SSE）
Fig.13 Potential−current curve(2) in reduce reaction

③Ag析出回収量の良好な条件、すなわちHNO₃濃度2 N、初期Ag濃度0.05mol/1において、電極面積の影響を調べた結果をFig.14に示す。その結果、電極面積を3倍とした場合は（電極面積：一定）、Ag析出量は約1.3倍になった。一方、陰極面積を3倍とし、電極面積を2倍とした場合のAg析出量は約1.5倍であり、電極面積増大によって析出量が増加する傾向は
認められたが、顕著なAg析出量増加には至らなかった。このことより、電極面積を大きくして電流密度を小さくした方が回収効率の向上を図ることがわかった。

以上の試験結果の内、Fig.14に示した3つの試験のうち、陰極及び陽極の電流密度の最も小さい試験のデータを選択してFig.15に示す。この電位一電流曲線には特徴的な2つのプラトーがあることがわかる。電着の様子を観察したところ、＋0.35V付近の小さなプラトー部分では銀色樹枝状の電着が見られ、＋0V付近の長いプラトー部分では黒色綿状の電着が認められた。

これら2つの異なる電着状態は、Fig.16に示した電析形態と電着条件の相関関係図上を用いて次のように説明できる。すなわち、初めは樹枝状電着(FI)であったもので、陰極の電位を下げたことによって電流密度が大きくなり、粉末状析出(P)のエリアへとシフトしたものと推定される。実際にAgを回収することを考えると、ハンドリング性に優れた樹枝状電着が望ましい。

以上のことから電着回収試験を実施するに当たり、陰極電位として＋0.35Vが適切と考え、これを採用することとした。

Fig.15 Potential-current curve(4) in reduce reaction

Fig.16 Conceptual diagram of correlation between electrodeposition form and electrodeposition condition

(2)電着回収試験

電解時の陰極液中のAg濃度の推移をFig.17に示す。電解開始直後と終了直前を除いた5点のデータを1次近似した直線を合わせて示した。この直線近似部分のデータを用いて電流効率を評価すると、Ag濃度減少分に相当する電気量は

\[(0.0454-0.0102)\text{[mol/lt]} \times 1.81\text{[l]} \times 96500\text{[C/mol]} = 6114\text{[C]}\]

実際に流れた電気量は

7387 - 640 = 6747\text{[C]}

\(\therefore\) 電流効率 = 6747/6747×100 = 99% 一方、実際に回収できたAg量(5,554g)から回収効率を評価すると,

電解開始時の初期Ag量は

0.0473[mol/lt] \times 1.81[l] \times 107.868 = 9.184\text{[g]}

\(\therefore\) 回収効率 = 5,554/9,184×100 = 60% となることがわかった。
この結果、SUS 成分濃度が高いほど (Run-3) 銀回収量が減少する傾向のあることがわかった。この結果を前(2)項で評価したものと同様に直線近似のデータを用いて電流効率を評価すると、Run1, 2, 3では各々72, 62, 47%となることがわかった。

Fe, Cr, Ni 濃度の増加に伴って Ag 回収効率が低下する傾向を示すことは、主反応である(1)式以外の反応が関与しているものと考える。

\[
\begin{align*}
\text{Ag}^+ + e^- & \rightarrow \text{Ag} \quad \text{(1)} \\
E_o &= 0.799 + 0.0591 \\
\text{Fe}^{2+} + 2e^- & \rightarrow \text{Fe} \quad \text{(2)} \\
E_o &= -0.440 + 0.0295 \log [\text{Fe}^{2+}] \\
\text{Cr}^{2+} + 2e^- & \rightarrow \text{Cr} \quad \text{(3)} \\
E_o &= -0.913 + 0.0295 \log [\text{Cr}^{3+}] \\
\text{Ni}^{2+} + 2e^- & \rightarrow \text{Ni} \quad \text{(4)} \\
E_o &= -0.250 + 0.0295 \log [\text{Ni}^{2+}] \\
\text{Fe}^{3+} + e^- & \rightarrow \text{Fe}^{2+} \quad \text{(5)} \\
E_o &= 0.771 + 0.0295 \log [\text{Fe}^{3+}] \\
\text{Cr}^{3+} + e^- & \rightarrow \text{Cr}^{2+} \quad \text{(6)} \\
E_o &= -0.407 + 0.0295 \log [\text{Cr}^{3+}]
\end{align*}
\]

(1)式～(6)式のうち、主反応(1)式と電位 (0, 799V) と接続している(5)式の反応電位(0, 771V)に寄与する割合が大きいと言えるが、Fe イオンが3 倍から2 倍に還元され、Fe 2 倍の還元電位が0, 44V と差が大きいことから陰極への Fe の析出量は少なかったものと推定できる (Table 2)。

不純物濃度の最も高い Run 3 (Fe: 3, 700Cr: 900Ni: 400ppm) を添加した場合の陰極液中の濃度変化を Fig.19 に示す。この図から、陰極液中の Ag 濃度の減少傾向は見られるが、不純物である Fe, Cr, Ni 濃度にはほとんど一定である。これは Table 2 で示したとおり陰極への析出割合が0.2 %と極めて低く、Ag 回収率は低くても析出 Ag の品質上問題のないことがわかった。
Table 2 Electrodeposition rate of Ag, Fe, C, Ni

<table>
<thead>
<tr>
<th></th>
<th>Ag</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>75.7</td>
<td>1.4</td>
<td>1.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Run 2</td>
<td>69.5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Run 3</td>
<td>43.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Fig.20 Change of Ag (I) concentration in catholyte (electrodeposition and resolving)

4. まとめ

ラジカル除染法の基礎試験を行い、水酸基ラジカル生成の基礎となる銀二価イオンの生成最適条件、
最適条件下での金属の溶解特性及び有機物の分解特性を確認できた。さらに、銀の選択的回収性能に係
わる最適処理条件及び銀の再溶解挙動を確認することができた。

具体的な成果は以下のとおりである。

(1) 除染条件の最適化
① 電位－電流曲線から、銀二価生成の陽極酸化電
位は+2.1V が最適である。
② 酸化濃度及び酸化度が高いほど、銀二価イオン
の生成効率が良い。
③ 電解温度は常温(25℃)が最適で、高くなるほど
銀二価イオンは減少する。
④ 銀二価イオンの寿命は、酸化濃度が高いほど長
く、半減期は生成初期で約2時間、生成から1.5
時間経過後の半減期は約10時間であった。

(2) 金属溶解
① 金属溶解時の銀濃度は、0.2mol/l が適切で、
硝酸濃度は高いほど溶解量が多い。
② SUS304表面に酸化被膜を施した場合、酸化被
膜のない SUS304に較べ溶解速度は、約2/3
であった。チタン、ジルコニウムは全く溶解せ
ず、耐食性を示した。

(3) 有機物の分解
イオン交換樹脂及びEDTAの分解に必要な電気量を測定し、溶液であるEDTAの方が1桁電気量の低いことを確認した。

(4)銀の選択回収・再溶解特性
①銀の陰極析出電位は+0.35Vが適切で樹枝状の銀が得られ、硝酸濃度は低いほど析出効率が高い。
②回収液中にSUSの溶解物質(Fe, Ni, Cr)が混入した場合でも、鉄三価イオンの影響によって銀の析出効率が低下するだけであり、再利用する銀の品質には問題ない。
③銀の再溶解速度は、溶存初期の5分間で電着量の5%相当が溶解する。

以上の基礎試験を実施し、除染に必要な最適条件を得ることができた。特に、生成した銀二価イオンの寿命と銀生成量の相関が得られたことは、解体物の除染及び修理・改造等の除染に対して適用性が広く、系統除染の可能性の見通しを得た。一方、除染処理から銀を回収・再溶解する、いわゆる除染剤を再利用できる見通しを得るなど、様々な知見を得ることができた。

5.参考文献
2) M. Pourbaix, "Atlas of electrochemical equilibria"
3) 久保ら編,「理化学事典第4版」岩波書店
4) 高橋正雄、増子 一昇、「工業電解の化学」鰐アグネ、p107
Promising Technology for the Melting of Dismantled Metal by an Induction Cold Crucible

Masahiro Suzuki*, Tsutomu Tanaka**, Yoshiaki Ikenaga**

An induction cold crucible melting is one of the most promising technologies for the reuse of radioactively contaminated metals because it ensures a long life operation without generating secondary wastes under the high temperatures of metal melting.

A feasibility study on MERC (Melting and Recycling of Metals by Cold Crucible) process has been recently finished in RANDEC. In MERC, an induction cold crucible, which mainly consists of a melter, decontaminator and continuous caster is used for the melting and recycling of metals contaminated by low level radiation with small section generated from the nuclear facilities.

A cylindrical ingot of 3 kg and 45 mm in diameter was continuously cast by the MERC process through melting and solidifying simulated radioactive metallic tubes with the addition of flux composed of lime, alumina and silica. Neither splash of the melt nor increase in the temperature of the hook supporting tubes took place during releasing the tube onto the melt dome. The ingot surface was smooth and crack free, promising removal of radioactive elements contained in a slag stuck to the ingot surface. There was no macro segregation inside. Tracer elements of Sr and Hf remained in the slag, Cs and Zn in the dust. Co and Mn mostly remained in the ingot. However, up to 10% of Co could be transmitted to the slag.

Necessary data in the scheduled scale-up of MERC process was obtained through experiment as well as theoretical study. These results are transferred to the design and manufacturing of testing apparatus.

This work is a part of the project of RANDEC under the sponsorship of the Science and Technology Agency of Japan.

1. はじめに

冷却坩堝を用いる誘導溶解技術（コールド・クルーシプル）は殆ど溶融炉を損傷することなく、高温、高エネルギー密度を達成することが可能である。特に連続処理のコールド・クルーシプルを用いて高純度の物質を製造するための工業化に向けた努力が、国際では過去に住友グループを中心として行われて
来ており、現在も行われている。一方、コールド・クルーシルの放射性金属廃棄物の処理・再利用に対する適用の例はなく、技術の適用及び実用性の確認が期待される所である。

また、原子力発電所の廃棄物のコールド・クルーシルは、単なる金属融解だけでなく、溶融塩あるいはガラスから溶融浴中に化学反応が起こる複雑なプロセスである。焼却灰、オイオン交換樹脂の溶融に至るまでの広範囲の材料を対象とする理想的な溶融法であると考えられる。

コールド・クルーシルを用いる溶融・固化装置は金属を低温顶级と一部非接触の状態で誘導溶解出来ると共に、連続処理への展開が比較的容易である。連続処理が可能なコールド・クルーシルはパッチ処理に比べて小型化が可能であり、セル内への設置を想定した場合に有利となる。また、電磁力の作用により溶融金属は低温頂と一部非接触となるため、長時間の溶融に対して炉の損傷がむしろあり、炉の維持管理が容易である。さらに、通常の溶融炉に使われる耐火物張りの高温炉が不要で、二次廃棄物の発生量が極めて少ない等の利点がある。

RANDECでは、科学技術庁の委託を受け、特に廃止措置により発生する解体金属の減容化再利用及び放射性物質の除染と固定を目的に、MERCプロセス（Melting and Recycling of Metals by Cold Crucible）を開発中である。既に、基礎的なデータを取得するための溶融基礎試験を行い、現在はMERC試験装置を使用して溶融試験を継続している。

溶融基礎試験では、鱗片状の金属片あるいは短尺の配管類を溶融材料として連続的に溶融・固化を行うと共に、高周波電源出力、適正な溶融条件などの調査、放射性物質を模擬した元素によるトレーサ試験、造浄剤（フラックス）の添加による溶融除去の可能性について検討を行ったので、その概要を報告する。

2 コールド・クルーシルの概要

放射能汚染された解体金属の誘導溶解における塩堿材質の選定は重要な問題である。なぜなら、通常の誘導溶鍊に用いられる耐火物製塩堿は、解体金属と反応し、耐火物が損傷して二次廃棄物となるからである。水冷構造の金属材質から成る塩堿のみが、二次廃棄物を発生することなく溶融した部体金属を保持するために用いることができる。しかし、アーク溶鍊などに使用される亜電流の意味での冷却塩堿の構造では、誘導コイルにより形成される磁場は塩堿内に顕著に減少するので、解体金属は交流磁場から遮蔽され、誘導溶鍊が実現できない。

この問題に対するひとつの解決方法が、すでに今世紀の初頭、1931年に独日特許として提案された。この特許の要点は、冷却された金属塩堿の長手方向に沿ってスリットを設置し、隣接セグメントを互いに電気的に絶縁することにより、塩堿外壁に流れれる誘導電流を塩堿内壁に導くことが可能として、金属塩堿内で解体金属を誘導加熱により昇温、溶融する点にある。

Fig.1を用いて、コールド・クルーシルの基本機能について説明する。コールド・クルーシルは、らせん状に巻かれた水冷の高周波誘導コイル、および塩堿を構成する複数の互いに絶縁された水冷構造の導電性材質（一般には銅材質）のセグメントか

Fig.1 Model of continuous treatment by Cold Crucible

- 59 -
ら成る。このとき、坩埚とコイルが一様のトランス系を構成していると考えてよい。誘導コイルには高周波電流が供給される。

Fig.1 では、ある瞬間においてコイルを流れる電流 J_m の向きは時計回りである。逆に絶縁されたセグメントには、電磁誘導の結果、コイルと逆回り、すなわち反時計回りの誘導電流 J_m が発生する。この結果、被溶解材料には反時計回りの誘導電流 J_m が発生する。誘導電流 J_m の発生は、被溶解材料の加熱および溶融を実現する。

また、誘導電流が流れることにより、坩埚内部の空間においては磁束密度 B が発生する。被溶解材料に流れる誘導電流により発生する磁束密度の向きは、セグメントに流れる誘導電流により発生するそれと同じでFig.1の場合は共に下向きである。被溶解材料に作用する電磁力は、公式 F = J x B、から被溶解材料の内部に向かって、被溶解材料を締め付ける方向に作用することが分かる。電磁力は磁力ベクトルなので、位相が反転し、誘導電流と磁束密度の方向が逆向きである場合でも作用する力の向きは変わらず、一般に被溶解材料を締め付ける方向に作用する。すなわち、ビンチャ力として作用する。これは、コールド・クルーシプの形状制御機能と呼ばれる。

さらに、一般に、電磁力は有限の表面深さで減衰し、負荷では電磁力が均一に分布しないので溶融状態にある材料の内部に流動が起こる。これは、コールド・クルーシプの摂拌機能である。

このように、コールド・クルーシプ内においては誘導加熱、形状制御および電磁摂拌の 3 つの基本的機能が現れる。

コールド・クルーシプの特徴は以下の様に集約される。

- 坩埚が水冷されているので、ジルカロイ等の高融点活性金属の溶融においても溶損はほとんどなく炉寿命が長い。
- 溶融部と固化部が連続しているので、処理プロセスの連続化が可能であり、処理能力の向上、インゴットの品質の向上およびインゴットの成形が可能になる。
- 装置が小型で、ホットセルへの収納が容易である。
- 溶湯プールは電磁摂拌を受けるので、組織の微細化、造渣剤による除溶反応が促進され、再利用に対して好ましいインゴットが得られる。

このようにコールド・クルーシプは多くの特徴を持つが、同時に多くの運転パラメータあるいは装置パラメータが必要であるので、適正な条件で溶融を行うことが必要になる。これらの主なパラメータとしては、以下の項目が挙げられる。

- 坩埚の構造（スリット数、長さ、間隔）
- コイルの配置
- 湯面の高さ
- 高周波電源の出力
- 周波数
- 引き抜き速度

3. 溶融基礎試験

3.1 溶融基礎試験装置

溶融基礎試験装置の溶融・固化部の概要をFig.2に示す。装置の主要部は材料供給、溶融・固化、インゴット引き抜きの各部から成り、これに高周波電流

![Fig.2 Schematic View of the fundamental](image-url)
源、冷却水供給、不活性ガス供給、オフガス処理の各付帯装置が付随している。溶融基礎試験装置の主な仕様を Table 1 に示す。

Table 1 Major specifications of the fundamental experimental apparatus

<table>
<thead>
<tr>
<th>溶融金属</th>
<th>Ni 基合金</th>
<th>ステンレス</th>
</tr>
</thead>
<tbody>
<tr>
<td>坩堝内径</td>
<td>45mm</td>
<td></td>
</tr>
<tr>
<td>引き抜き長さ</td>
<td>最大300mm</td>
<td></td>
</tr>
<tr>
<td>引き抜き速度</td>
<td>1〜50mm/min</td>
<td></td>
</tr>
<tr>
<td>雰囲気</td>
<td>Ar 等</td>
<td></td>
</tr>
<tr>
<td>壓力</td>
<td>1.0E3〜1.1E3hPa</td>
<td></td>
</tr>
<tr>
<td>高周波電流</td>
<td>出力</td>
<td>最大45kW</td>
</tr>
<tr>
<td></td>
<td>周波数</td>
<td>約18kHz</td>
</tr>
</tbody>
</table>

Ni 基合金、ステンレスはそれぞれ、蒸気発生管および、原子力施設内の配管類を想定したものである。冷却坩堝の材質は鋼であり、その内径は45mmである。円筒状の坩堝には鉛直方向に延びる12本のスリットが円周に沿って等間隔に配置されている。誘導コイルは外径10mmの水冷の鋼管からなり、坩堝の回りに4回巻いており、コイルの横層高さは約50mmである。このコイルは最大出力45kW、周波数18kHzの高周波電源に接続されている。坩堝は水冷構造の雰囲気調整チャンバーに収容されており、通常の解離では大気圧より100hPa高い Ar 雰囲気中に維持される。

雰囲気調整チャンバーの上方には内径 8〜22mm程度、最大長さ270mmの短尺配管が保持、送り可能な材料供給装置が配置されている。また、管材料の送り速度は5〜100mm/分の範囲で可変である。

代表的な溶融基礎試験方法の概要は以下の通りである。引き抜きの初期の金属、すなわち溶融の母材（ダミーヘッド）を坩堝下方の開口部から磁場が最も強く作用し、溶融に達した坩堝内に挿入した後、チャンバー内を Ar ガスで置換する。誘導コイルに高周波電流を供給して電力の供給を増加すると、ジュール熱により母材は溶融するとともに、電磁力の作用により冷却帯から離反してドーム状（半球状）に隆起して、溶融金属は揺動される。

母材が溶融した後、短尺の配管類等の溶融材料を上方か坩堝内に供給する。また、必要に応じて造渣剤等を供給する。材料の供給速度と、引き抜き速度を精度良く制御することにより溶融工程を通じて、ドームの頂点を坩堝内の特定の位置に維持することが出来る。このようにしてインゴットが連続して得られる。

3.2 トレーサーの添加
放射性核種がインゴット、スラグおよびダストに移行する割合を調査するために材料の溶融過程においてトレーサー（放射性核種を模倣する安定同位体元素）の添加を行った。添加元素を Table 2 に示す。Co, Sr, Cs, Zn, Mn はそれらの解体金属に付着する核種を模倣したトレーサーであり、Hf は U, Pu を模倣するトレーサーである。溶融前に所定量のトレーサーを計量して配管内の空間に一様に充填した。

Table 2 Amount of tracer added during melting (g)

<table>
<thead>
<tr>
<th>Co</th>
<th>SrO</th>
<th>CsCl</th>
<th>Zn</th>
<th>HfO₂</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

溶融過程における周波変面を特定するために、母材が溶融した後、粉末状のタンクステンを添加した。また、溶融過程において、主に、CaO, SiO₂, Al₂O₃ から成る造渣剤を添加した。トレーサーのスラグへの移行を促進するため試験中は溶湯の大部分は造渣剤で覆われており、裸湯を直接観察することは出来ない。試験において塩基度（CaO/SiO₂）の値を0.3〜1.8まで変化させた。

ダストは排ガスフィルターで捕集した。インゴットの表面に付着したスラグは、溶融・固化後のインゴットとスラグの収縮係数の差を利用して剥離することが出来た。また、剥離しなかったスラグはインゴットの表面に衝撃を与えることにより簡単に回収できた。

3.3 配管類の溶融
コールド・クルーシプルを用いる誘導溶融法は、形状では他の通用用される高温炉を有する誘導溶融法に比べて溶融炉の断面積が小さい。このため、当面、配管類等の小断面長尺の材料が溶融に適した
材料の一つであると考えている。そこで、材料として配管を選択した。Ni基合金から成る直径7mmの配管をFig.3 aのように爪の摩擦で挟んで4本束ねた状態で鉛直に保持して、連続的にドーム状に隆起した溶融池に落下させた。爪の先端が所定の高さに到達した時点で、Fig.3 bのように爪を開放して溶融材料を溶融池に落下させる必要がある。開放高さが高い場合は、爪の昇温は避けられるが、溶融の飛散、あるいは配管類の堆壊外への転倒といった問題が発生することが懸念される。逆に、開放高さが低ければ溶融あるいは塑性変形が起こる可能性がある。本試験はこの点を確認するために行った。

溶融試験条件はTable 3に示す4本のNi基合金から成る配管を用いる点を除いてTable 1に同じである。

Table 3 Dimension of the Alloy 600 tube

<table>
<thead>
<tr>
<th>外径 (mm)</th>
<th>肉厚 (mm)</th>
<th>長さ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.5</td>
<td>270</td>
</tr>
</tbody>
</table>

Fig.3 Melt of tubing
a: Melting, b: Release

4. 数学モデルの概要

溶融基礎試験の成果はMERC試験装置の設計・製作に反映される。試験装置の重要な設計パラメータの一つに高周波電源の容量評価がある。複数の配管類を溶融することを念頭において、試験装置の堆壊の内径を100mmとした。通常のPWR蒸気発生管の場合、4本が同時に溶融できる堆壊の大きさに関当する。

必要かつ十分な高周波電源の容量は基礎試験でその妥当性を確認した数学モデルを用いて評価することが出来る。数学モデルを用いた評価方法をTable
4 に示す。最初に溶湯の形状を評価する。これはシートモデルを用いて静的な溶湯形状を前提に電磁気力、重力および表面張力を考慮した力の平衡条件から得られる。数値的には自由境界問題を解くことになる。電磁の出力が小さい場合はモデルは正しい結果を与えない点に注意する必要がある。なぜなら、そのような条件では材料は溶融しないにもかかわらず、モデルにおいて材料は常に液体であることを仮定しているからである。しかし、このような点は大きな問題ではなく、通常の材料に投じられるエネルギーが材料を溶融するに十分な程度大きく、かつ電磁場の表皮深さがインゴットの半径に比較して小さい場合には正しい結果を与える。

有限体積要素モデルでインゴットにおける電磁場の分布が得られた後、インゴットと冷却壁の間の熱伝達係数をパラメータにして伝熱と流動の結合計算を行うことにより溶湯ブールの底に位置する固液界面の形状を求めることができる。基礎試験で得られた固液界面と計算で得られた固液界面を比較することにより、インゴットと冷却壁の間の適正な熱伝達係数を求めることができる。この熱伝達係数を用いて周辺温度の出力をパラメータにしてスケールアップした MERC プロセスに適用する。このようにして、配管を溶融するに必要かつ十分な電源容量を評価することが出来た。

5. 溶融基礎試験結果

5.1 インゴットの品質

解体金属の再利用においては、インゴットの品質は優れていることが望ましい。これは、単に再利用製品向けのインゴットの加工工程での欠陥の発生率を下げるために必要であるばかりでなく、解体金属の清浄度を高める観点からも必要である。一般に、解体金属に付着している放射性核種は溶融過程においてインゴット、スラグ、ダスト、排ガス等に移行する。そして、放射性核種を含むスラグはインゴットの表面に付着する。インゴットに表面の欠陥が生ずると、欠陥部にスラグが流入してインゴットの表面からスラグを剥離することが困難になる。

幸いにも、MERC プロセスでは引き抜き過程においてインゴットと冷却壁の間に発生するポミ応力はインゴットと溶融金属に作用する電磁力のために軽減されて、いわゆる軟接触状態となる。さらに、溶融部は不均一な電磁力の分布によって電磁巻き込みが起こるとともに、冷却壁側からジュール加熱される。このため、MERC プロセスでは表面欠陥の発生率は小さいと考えられる。ステンレス管の溶融の様子を Photo 1 に示す。溶湯の表面が狭く（コイル上端からダミーパー上端までの長さ）、引き抜き速度および電源出力に関して適正な値の組み合わせを選択することにより MERC プロセスで 3 kg程度のインゴットを製造することが出来た。

Photo 1 Melting of the stainless steel tubing

引き抜き方向に沿う表面および断面の Ni 基合金インゴットの外観を Photo 2 に示す。インゴットの長さと直径はそれぞれ200mmおよび45mmである。表面は滑らかで割れが存在しなかった。このこ
とから、造済剤を添加した場合、表面にはスラグが付着し難いことが期待される。実際に、スラグの多くはインゴット冷却後の熱収縮あるいは坩埚との摩耗により自然に剥離し、またインゴットに付着していたものは簡単な衝撃を与えることで剥離することが出来た。このように MERC プロセスではインゴットの表面品質が優れているため、溶融除染過程においてインゴットに移行すると考えられる放射性核種をインゴットから容易に分離、回収出来ることが期待できる。

坩埚にはスリットが存在するにもかかわらず、溶融金属はスリットの間隙に流入しない点は注目すべきである。スリットの前面に相当するインゴットの部分は若干窪んでいる。溶融ドームの周囲は花弁のように周期性を持っている。スリットの前面は花弁の間に相当し、電磁場が強いために電磁気圧により押されて冷却板との間隔は拡大している。スリットの前面でインゴットの色が変色しているのは Ar ガス中に含まれる酸化により酸化された金属の部分が凝固したスリットの前面に集まったためと考えている。

凝固収縮に伴う窪みが引き抜きの最後の部分（インゴットの上の部分）に認められた。これは、引き抜きの最後の過程で坩埚からの冷却だけでなく主に幅射熱損失に起因するドーム上方からの冷却も同時に進行することに起因している。連続的に引き抜きを行い、かつ所定の長さでインゴットを系外に取出して、ドーム頂点の凝固が起こる頻度を下げることが可能であり、この問題は解消できる。

元素分析からインゴット内部では巨視的な偏析が起こっていないことが判明した。さらに、材料の未溶融部の研磨面は認められなかった。これらはインゴットを再利用する上で望ましい条件である。

インゴットの表面と内質に関して Ni 基合金と類似の結果がステンレス钢管の溶融を行った場合のインゴットに対しても得られた。Cu, Ni, Cr および Fe の元素を ICPS (誘導結合型プラズマ分光分析) 法で分析した。中芯および表皮から 5 mm 深さにおけ る引き抜き方向に沿う元素の分布を Fig. 4 に示す。元素濃度は引き抜き方向および半径方向に均一に分布していることが分かる。この事は巨視的偏析が存在せず、インゴットが健全であり、放射線量が許容値以下になった場合に再利用に使用できる可能性を示している。また、特に元素濃度が高そうな部 位は存在せず、インゴットの保管に適していることが分かる。

Cu 濃度は分析の下限値である 100 ppm 以下である。このことは、坩埚は損傷することなく長期にわたって使用できる可能性を示している。特に、放射性汚染された材料を溶融処理する場合には坩埚の劣化による二次廃棄物の発生が少なくなるものと考えられる。
5.2 トレーサの移行

トレーサを添加した時に溶融していたインゴットの部分はタングステンを添加して得られる固・液界面の位置から知ることが出来る。未液化（未溶融状態）の白色の造渣剤は分析の対象から除いて、スラグに移行した元素は溶融してガラス化したスラグに対してだけ分析を行った。すべてのデータを収集することは困難であるが、チャンバー中央部のデータを可能な限り注意深く収集した。

インゴット、スラグおよびダスト中に含まれる元素の量は元素分析から得られるそれぞれの濃度と質量の積から求められる。トレーサのインゴット、スラグおよびダストへの分配をFig.5に示す。データはバラツイしているものの、この図から分配の傾向を知ることが出来る。傾向としては、Co と Mn はインゴットに、Cs と Zn はダストに、Sr と Hf はスラグに多く移行することが分かる。Cs と Zn がダストに移行するのはそれらの元素の沸点が低い（それぞれ976K、1176K）ためと考えられ、インゴットとスラグへの分配は酸化の度合いの違いによるものと考えられる。2000KにおけるHf、Sr、MnおよびCo元素の酸化物生成標準自由エネルギーはそれぞれ-3,98E2、-3,64E2、-2,31E2および9,17E1kJ/atomである。この逆に、HfおよびSrの方がMn、Coよりも酸化されやすく、スラグに移行することが考えられる。元素の分配の傾向は文献3,7と一致する。Coのスラグ移行割合は10％であった。今回の基礎試験ではデータがバラツイたために造渣剤の塩基度の影響を明らかにすることは出来なかった。この点については、MERC 溶融試験装置で明らかにされるものと考えている。

5.3 配管類の溶融

4本のNi基合金製配管(Alloy600)を同時溶融した。その際、開放する配管の長さをパラメータにした。開放した配管の長さと爪の先端の温度の関係をFig.6に示す。一般に、開放した管の長さが短くなると共に、爪が溶融に接近するので、爪温度が上
6. 溶融融試験装置の設計

内径100mmのコールド・クルーシバルを対象に、数値計算によって求めたメニスカス形状、温度分布および流動パターンをコールド・クルーシバルに投入する電力の関数としてFig.7に示す。電力の増加と共に、坩堝壁と非接触となる溶浴の隆起高さは増加する。投入電力の低い場合は、高周波領域は溶浴と坩堝壁の接触点近傍に現れる。投入電力の増加と共に、溶浴の温度は増加する。63kW以下の場合、溶浴温度以下のために電磁摺乱は起こらない。しかし、118kWを越えた領域では、金属は溶浴して電磁摺乱が起こり溶浴内の温度は均一になる。数値計算の結果から、内径100mmのMERCプロセスに対しては118kWの電力が必要であることが判明した。

7. あとがき

MERC(Melting and Recycling of Metals by Cold Crucible)プロセスの基礎試験が完了した。MERCプロセスでは、配管類で代表される小断面かつ低レベルで汚染された解体金属の溶融と再利用に対して溶融、除染、凝固、引き抜き等からなるコールドクルーシバルが使われる。基礎試験から以下の結論が得られた。

1) MERCプロセスで管状の模擬放射性解体金属に石灰、アルミナおよび珪石からなる造渣剤を添加しつつ、溶融し引き抜きを行って直径45mm、重さ3kgのインゴットが得られた。
2) 溶解の最後に溶浴上に配管類を落下させても溶融金属の飛散はなく、配管を保持する爪の昇温は観察されたが設計許容値以下であった。
3) インゴットの表面は滑らかで割れは存在しなかった。このことから、スラグに移行した放射性核種が容易にインゴットから分離出来ることが期待される。
4) 模擬放射性核種のSrとHfはスラグに、CsとZnはダストに移行した。CoとMnの大部分はインゴットに残留した。しかし、Coの10%程度はスラグに移行した。
5) MERCプロセスをスケールアップするために必要なデータが実験および数値計算から得られた。

コールド・クルーシブルは今後ますます有望な溶融技術として、広くその適用が検討され、放射性廃棄物の管理技術としても海外及び国内において観念研究が進められている。本溶融基礎試験で得られた成果によりMERCプロセスのスケールアップを達成し、MERCプロセスが廃止措置から発生する金属廃棄物を有効に再利用するための有効な技術として、更にその実用性を確認することが必要になるものと考えられる。

文献:
3) German Pat. 518499, Jan. 19 (1931).
お詫びと訂正について

下記の技報に誤りがありましたので、訂正させて戴くと共に、お詫び申し上げます。

デコミッションニング技報 No.15 1996
○総説「スペイン・イタリアのガス冷却炉の廃止措置状況」

【訂正個所】
4頁 Fig.1 の断面図と 9 頁 Fig.7 の断面図のみを入れ替えて下さい (Fig.1 及び Fig.7 のタイトルはそのままです)。
RANDEC's Capability

Research Association for Nuclear Facility Decommissioning (RANDEC) plays a key role in establishing overall technology for decommissioning nuclear facilities.

The capability and service of RANDEC are to:

- Implement decommissioning research, development and investigation.
- Provide technical information on decommissioning.
- Train for decommissioning.
- Inform and enlighten the public about decommissioning.
財団法人
原子力施設デコミッションング研究協会
〒319-11 茨城県那珂郡東海村舟石川821番100東海外村ビル
TEL. 029-283-3010 FAX. 029-287-0022